2011 SWAMP Bioassessment Monitoring El Dorado Hydroelectric Project (FERC 184) ## Prepared for: 2890 Mosquito Road Placerville, CA 95667 ### Prepared by: Garcia and Associates 1 Saunders Ave San Anselmo, CA 94960 February 2012 #### **TABLE OF CONTENTS** | INTRODUCTION | 1 | |--|---| | METHODS | | | Site Selection | 1 | | Benthic Macroinvertebrate Sampling | 2 | | Physical Habitat Characterization | 3 | | Laboratory Protocol | 3 | | Data Analysis | 4 | | RESULTS | 5 | | 2011 Benthic Macroinvertebrate Summary | 5 | | 2011 Physical Habitat/Water Quality Summary | 5 | | DISCUSSION | 6 | | Comparisons between Reference Reaches and Project-Affected Reaches | 6 | | CONCLUSION | 7 | | REFERENCES | 7 | | | | #### **FIGURES** - Figure 1. 2011 Project 184 SWAMP bioassessment survey locations - Figure 2. Multi-metric Hydropower-IBI scores in Project-affected vs. reference reaches - Figure 3. Benthic community diversity in Project-affected vs. reference reaches - Figure 4. Abundance of major insect orders in Project-affected vs. reference reaches - Figure 5. Abundance of major non-insect classes in Project-affected vs. reference reaches #### **TABLES** - Table 1. GPS locations of 2011 SWAMP bioassessment survey reaches in Project 184 area - Table 2. Biological metrics used to describe benthic samples - Table 3. Scoring ranges for constituent metrics of the Hydropower-IBI - Table 4. Summary of biological metrics for 2011 Project 184 SWAMP bioassessment samples - Table 5. Summary of reach-wide physical habitat measurements from 2011 Project 184 SWAMP bioassessment sites - Table 6a. Summary of transect-based physical habitat measurements from 2011 Project 184 SWAMP bioassessment sites - Table 6b. Summary of transect-based physical habitat measurements from 2011 Project 184 SWAMP bioassessment sites (continued) #### **APPENDICES** Appendix A: 500-Organism Fixed-Count Taxa Lists Appendix B: Estimated Whole-Sample Taxa Lists Appendix C: Site Photographs Appendix D: Copies of Field Datasheets #### **INTRODUCTION** Pursuant to the El Dorado Hydroelectric Project (Project 184) Benthic Macroinvertebrate Monitoring Plan (Plan; GANDA 2010), El Dorado Irrigation District (District) is required conduct BMI monitoring in various Project-affected and reference stream reaches throughout Project 184 watersheds. Per the Plan, bioassessment surveys are required during the first two years of each five-year period of the current Project 184 License (including 2011 and 2012). BMI monitoring efforts conducted during the Project 184 relicensing process between 1999 and 2001 (ECORP 2002) helped establish the Project's ecological resource objective for BMIs which states that macroinvertebrate indices (metrics) in Project-affected reaches should be similar to those in reference reaches located within and outside of the South Fork American River (SFAR) and Upper Truckee River (UTR) drainages. Previous bioassessment surveys conducted in the Project 184 area followed the California Stream Bioassessment Procedure (CSBP) (CDFG 2003). The Project 184 license requires macroinvertebrate monitoring using the CSBP method or such method as revised in the future. The current accepted methodology is the State's Surface Water Ambient Monitoring Program (SWAMP) Standard Operating Procedures for Collecting Benthic Macroinvertebrate Samples and Associated Physical and Chemical Data for Ambient Bioassessments in California (SWAMP 2007) which officially replaced the CSBP as the statewide standard for ambient bioassessment in 2007. Therefore, the SWAMP bioassessment protocol is the methodology specified in the Plan. The District tasked Garcia and Associates (GANDA) to conduct 2011BMI bioassessment surveys in Project 184 watersheds. This report presents the results of SWAMP bioassessment surveys conducted as specified in the Plan during fall 2011. #### **METHODS** #### Site Selection The Plan specifies monitoring at a total of 18 sites in Project-affected reaches and associated reference reaches within Project 184 watersheds. These watersheds include the following (some of which contain paired sites located above and below existing diversion points): - Echo Creek (Site EC-B1) - Pyramid Creek (Site PY-B1) - Caples Creek (Site CA-B1) - Silver Fork American River (Site SV-B2) - South Fork American River (Site SO-B1) - No Name Creek (Sites NN-B1 and NN-B2) - Alder Creek (Sites AR-B1 and AR-B2) - Bull Creek (Sites BU-B1 and BU-B2) - Ogilby Creek (Sites OG-B1 and OB-B2) - Esmeralda Creek (Sites ES-B1 and ES-B2) - Strawberry Creek (Site SB-B1) - Sherman Canyon Creek (Site SH-B1) - Woods Creek (Site WC-B1) The 18 bioassessment sites are located in the same Project-affected and reference reaches specified in the Plan (see Figure 1). GPS locations for each site are listed in Table 1. Generally, 2011 SWAMP bioassessment sites were located as close as possible to those sites selected previously during 1999-2001 relicensing efforts (ECORP 2002), although specific site boundaries for SWAMP survey reaches were established by GANDA field crews in 2011 that may be slightly upstream or downstream from the original areas sampled under the CSBP (for example, because the SWAMP protocol requires a longer survey reach than the CSBP). #### **Benthic Macroinvertebrate Sampling** Teams of two to four GANDA biologists conducted all benthic macroinvertebrate sampling following the SWAMP protocol. Field sampling was performed between September 29 and November 15, 2011. Sites consisted of 150-meter survey reaches wherever possible. Consistent with SWAMP protocol, shorter survey reaches were established at smaller tributaries including Esmeralda Creek (ES-B1 and ES-B2), No Name Creek (NN-B1 and NN-B2) and Ogilby Creek (OG-B1 and OG-B2) in order to avoid barriers or other confounding areas (*e.g.*, steep waterfalls, cliff areas, culverts, *etc.*). At each of these smaller tributary sites, there were numerous pool-riffle sequences to sample within the established survey reach. For larger streams (wetted width greater than 20 m), SWAMP protocol recommends increasing site length. There was one site where wetted width was consistently greater than 20 meters (Site SO-B1 on the South Fork American River [SFAR] below Kyburz Diversion Dam). However, the total survey reach length was not increased at this site because sufficient representative habitat was present within the 150-m reach and extending the site would have only added large, deep pool habitat that could not be sampled. At sites located at elevations below 6,500 feet (PY-B1, SO-B1, NN-B1 and 2, AR-B1 and 2, BU-B1 and 2, OG-B1 and 2, ES-B1 and 2, SB-B1, SH-B1), BMI samples were collected as reachwide benthos (RWB) samples. RWB samples were compilations of eleven 1-ft² kick samples collected at the 11 main transects comprising the SWAMP survey reach. At sites near or above 6,500 feet (EC-B1, CA-B1, SV-B2, WC-B1), BMI samples were collected as both RWB samples and targeted riffle composite (TRC) samples. RWB samples were collected as described above; TRC samples were compilations of eight 1-ft² kick samples collected at eight randomly selected riffle locations within each SWAMP survey reach. Decisions regarding which sample types to collect at which locations were made by the District in consultation with the SWAMP bioassessment coordinator. All benthic samples were collected using a Wildco® 18-by-9- inch stream-bottom sampler fitted with a 0.5 mm (500 micron) mesh bag. Samples were collected from downstream to upstream before physical habitat measurements to prevent excessive bottom trampling. At sites where both types of samples were collected, TRC and RWB samples were collected simultaneously in two separate nets while moving from downstream to upstream between transects. All samples were elutriated and cleaned in the field, placed in jars, labeled, and preserved in 10 percent formalin. #### **Physical Habitat Characterization** Physical habitat parameters (bankfull and wetted width, bankfull height, water depth, substrate composition, cobble embeddedness, algal cover, riparian vegetation, instream habitat complexity, canopy cover, human influence, bank stability, etc.) were evaluated at a combination of 11 primary and 10 secondary cross-sectional transects located along the survey reach. The "full" level of effort for physical habitat characterization as described in the SWAMP protocol was performed at all sites. Stream gradient at each site was measured using a clinometer and stadia rod (with eye-level marked) positioned at water's surface from transect to transect; compass bearings between transect mid-points were also measured. The upper, middle and lower portions of each SWAMP survey reach were documented with photographs taken in both the upstream and downstream directions, and both ends of each survey reach were marked using GPS. Discharge was measured using the standard USGS 20-point velocity-area method at all sites where stream gage data was not available; for streams where depths and velocities were too shallow and slow to measure flows in this manner, discharge was estimated using the buoyant object method to estimate surface velocities. Basic *in situ* water quality measurements were also taken at each site. Measured parameters included water temperature, pH, specific conductance, and dissolved oxygen concentration. All water quality measurements were collected prior to benthic macroinvertebrate sampling efforts at each site. #### **Laboratory Protocol** All benthic samples were processed and identified by Jon Lee Consulting. The laboratory subsampling procedure allowed separation of large/rare specimens from finer subsampled material so that more accurate estimations of the whole-sample taxa lists could be made. All samples were subsampled to a minimum of 600 individuals, although the last grid section (*i.e.*, the aliquot containing the 600th individual) was always
picked through and identified in its entirety to allow accurate estimation of the total sample abundance (and thus benthic density); therefore, in practice typically 625-675 organisms were identified in the laboratory. This higher level of effort (identifying a minimum of 600 instead of 500 individuals from each sample) is recommended to insure that closer to 500 clearly identifiable specimens are achieved after excluding any ambiguous and/or immature specimens. All specimens were identified to Level II standard taxonomic effort (STE) as defined by the Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT), which generally corresponds to the genus-species level for most insects, and slightly less rigorous effort (*e.g.*, tribe/subfamily, family, or class) for certain other taxa groups (Level II STE for California taxa is defined in SAFIT [2006]). #### **Data Analysis** Summary metrics for each replicate sample were calculated using a Microsoft Access database. Metrics are measurable attributes of macroinvertebrate communities that are known to change in response to disturbance or impairment of the stream environment. Metrics included standard richness, composition, tolerance/intolerance, and functional feeding group measures (see Table 2). All sample metrics were calculated from 500-organism fixed-count samples generated from the complete laboratory-identified taxa lists for each sample (500-count taxa lists are the standard for calculating metrics). Sample data were randomly re-sampled and standardized in this manner to achieve uniformity in count between all samples for comparative analyses (*e.g.*, so that the total number of taxa would be accurately represented for each site at a standardized level of effort, regardless of how many organisms were originally identified in the laboratory from each different sample). In order to reduce the complexity of the information contained in the numerous metrics that describe each sample, data were compiled into a single multi-metric index, the Hydropower Index of Biotic Integrity, or Hydropower-IBI (Rehn 2010). This IBI was developed by the California Department of Fish and Game (CDFG) Aquatic Bioassessment Laboratory to be sensitive to the cumulative effects of hydropower operations on stream benthic communities. The seven component metrics of the Hydropower-IBI (ET taxa richness, %intolerant individuals, %scrapers, %non-insect taxa, Shannon diversity, %predators, and %tolerant individuals) were chosen from over 80 candidate metrics calculated using a combined dataset from nine separate studies of regulated rivers in California managed for hydropower. Values for these constituent metrics were scored (0-10) according to specific thresholds (defined in Table 3) and final Hydropower-IBI scores were achieved by summing the constituent metric scores and adjusting the index to a 100-point scale. Note that although this IBI was originally developed using only TRC-type samples, IBI scores were calculated for both TRC and RWB samples for 2011 Project 184 SWAMP data because recent published and unpublished analyses suggest that RWB and TRC methods can produce generally comparable results across a broad range of settings within California (Van Buuren and Ode 2008). Therefore, it was assumed that RWB samples collected during this study contained sufficient riffle material for Hydropower-IBI analysis. Further details regarding development of the Hydropower-IBI are provided in Rehn (2010). Ten percent of the benthic macroinvertebrate samples collected during 2011 (2 randomly selected samples out of the 22 total samples collected) were submitted to CDFG's Aquatic Bioassessment Laboratory for a quality assurance/quality control (QA/QC) check for accuracy of enumeration and taxonomic identification. #### **RESULTS** #### 2011 Benthic Macroinvertebrate Summary In 2011, it is estimated that nearly 85,000 benthic macroinvertebrates were collected from the 18 sites in the Project 184 area (in TRC and RWB samples combined). Of these individuals, 14,530 specimens were identified, representing 217 different taxa from more than 67 families and 15 taxonomic orders (per SAFIT Level II STE). The most common taxa included caddisflies of the genera *Micrasema* and *Lepidostoma*, the nemourid stonefly *Zapada cinctipes*, clinger mayflies of the genera *Cinygmula*, *Ironodes*, and *Epeorus*, stoneflies of the genus *Sweltsa*, aquatic earthworms of the class Oligochaeta, mayflies of the genus *Ephemerella*, netspinning caddisflies of the genus *Hydropsyche*, and the ubiquitous mayfly *Baetis tricaudatus*. Complete taxa lists for 500-organism fixed-counts and estimated whole-sample taxa lists for all samples are presented in Appendices A and B, respectively. The average number of taxa per sample for all sites (including both TRC and RWB samples) was 44, including an average of 26 EPT taxa. Shannon Diversity averaged 3.01 and Shannon Evenness average 0.78 (78%). Percent EPT averaged 73 percent (53% of which were sensitive EPT) and the dominant taxon comprised 21 percent of the average sample. Tolerant and intolerant individuals comprised 2 and 49 percent of the average sample, respectively. The mean weighted tolerance value was 2.9. On average, collectors were the dominant functional feeding group (30%), followed by scrapers (22%), shredders (19%), predators (18%), filterers (5%), macrophyte herbivores (4%), omnivores (2%), and piercer herbivores (<1%). Macroinvertebrate density averaged 363 individuals/ft² for all samples. A summary of biological metrics for 500-organism fixed-counts from all TRC and RWB samples is presented in Table 4. Results of the CDFG laboratory's taxonomic QA/QC check will be reported (as they become available) if any significant discrepancies are found. #### 2011 Physical Habitat/Water Quality Summary SWAMP bioassessment sites surveyed in the Project 184 area in 2011 ranked between "optimal" and "marginal" in terms of available epifaunal substrate and cover, sediment deposition, and channel alteration (*i.e.*, rapid bioassessment [RPB] scores). Stream gradient ranged from low (1.6% slope at Caples Creek) to very high (28.0% slope at upper Bull Creek). Human influences encountered within survey reaches included walls/rip-rap, buildings, pavement, roads, pipes, campgrounds, historical logging, and bridge abutments. Water quality parameters were within acceptable ranges during the fall 2011 SWAMP surveys, with water temperatures ranging from 6.0 to 12.6 °C, pH ranging from 6.7 to 7.7, and dissolved oxygen concentration ranging from 9.5 to 13.8 milligrams/liter. Discharge ranged from less than 1.0 cubic foot per second (cfs) in several smaller creeks to 77.5 cfs in the mainstem SFAR during our surveys. A summary of physical habitat data and water quality measurements collected at each site in 2011 is presented in Tables 5 and 6 (Table 5 summarizes reach-wide habitat measurements collected once at each SWAMP site and Tables 6a through 6c summarize transect-based measurements collected at multiple cross-sections within each SWAMP survey reach). Site photographs are compiled in Appendix C. Copies of original SWAMP field datasheets are provided in Appendix D. #### DISCUSSION #### Comparisons between Reference Reaches and Project-Affected Reaches Overall, samples collected from Project-affected reaches scored slightly lower on average in terms of certain richness, composition, tolerance, and functional feeding group measures than those collected from reference reaches during 2011 SWAMP surveys (Table 4). Although some variation was apparent among individual metrics and samples, scores for the multimetric Hydropower-IBI averaged 16 percent higher overall in references reaches (57) than Project-affected reaches (49) (Figure 2). Total taxa richness averaged 25 percent higher in reference reaches versus Project-affected reaches (55 vs. 44, respectively). Richness of individual samples ranged from 68 taxa collected in the RWB sample from upper Ogilby Creek (Site OG-B2), to 31 taxa collected in the RWB sample from Caples Creek below Caples Lake (Site CA-B1). Shannon Diversity averaged nine percent higher at reference sites versus Project-affected sites (3.01 vs. 2.90, respectively; see Figure 3). Diversity of individual samples ranged from 3.67 in the RWB sample from upper Ogilby Creek (Site OG-B2), to 2.00 in the RWB sample from lower Alder Creek below the diversion (Site AR-B1). Macroinvertebrate density was generally lower in reference reaches than Project-affected reaches (256 vs. 437 individuals/ft², respectively). Among individual samples, density was lowest in the RWB sample from Woods Creek above Caples Lake (Site WC-B1) (39 individuals/ft²) and highest in the RWB sample from lower Alder Creek below the diversion (Site AR-B1) (1,245 individuals/ft²). Composition measures were more variable overall among reference and Project-affected sites. Averages values for most composition measures were very similar for reference and Project-affected reaches (Table 4). The overall percentage of insects was high for all samples (74% to 90%), although reference reaches had a slightly higher percentage of non-insect taxa on average than Project-affected reaches (12% vs. 7%, respectively). The average percent composition of tolerant organisms was very low for all samples (<1% to 5%) and the average percent composition of intolerant organisms was typically high (31% to 76%). Thus, average weighted tolerance values were relatively low (*i.e.*, good) for both reference and Project-affected reaches. Functional feeding group measures were similar overall among reference and Project-affected reaches, however samples from reference reaches had more scrapers (31% vs. 16%) and fewer macrophyte herbivores (<1% vs. 6%) on average (Table 4). The average composition of the major taxonomic groups differed slightly among reference reaches and Project-affected reaches in 2011. In terms of the major
insect orders, mayflies (Order Ephemeroptera), beetles (Order Coleoptera), and true flies (Order Diptera) were more abundant on average in samples from reference reaches, whereas caddisflies (Order Trichoptera) and stoneflies (Order Plecoptera) were more abundant in samples from Project-affected reaches (Figure 4). Non-insect taxa were much less abundant overall than insects, although aquatic earthworms (Class Oligochaeta) and clams (Order Bivalvia) were more abundant on average in samples from reference reaches, while freshwater mites (Class Acari) and snails (Class Gastropoda) were more abundant in samples from Project-affected reaches (Figure 5). #### **CONCLUSION** In general, Project-affected reaches scored lower than reference reaches in terms of many individual metrics as well as multi-metric Hydropower-IBI scores during 2011. However, the extent to which such differences may be attributable to Project operations remains unclear. The next SWAMP monitoring effort is scheduled for fall 2012; the combined results of both the 2011 and 2012 survey efforts will be used to evaluate benthic data from Project-affected and reference reaches in the context of the ecological resource objective described in the Plan. #### **REFERENCES** - California Department of Fish and Game (CDFG). 2003. California Stream Bioassessment Procedure (Protocol Brief for Biological and Physical/Habitat Assessment in Wadeable Streams). CDFG Aquatic Bioassessment Laboratory, revised December 2003. 11 pp. - ECORP Consulting (ECORP). 2002. Draft Benthic Macroinvertebrate Sampling Program: El Dorado Irrigation District, Hydroelectric Project 184 (El Dorado County, California). Dated 4 June 2002. - Garcia and Associates (GANDA). 2010. El Dorado Hydroelectric Project FERC Project No. 184 Benthic Macroinvertebrate Monitoring Plan. Version 2.0. Prepared by GANDA, December 2010. - Rehn, A.C. 2010. Benthic Macroinvertebrates as Indicators of Biological Condition below Hydropower Dams. California Energy Commission, PIER Energy-Related Environmental Research Program. CEC-500-2009-060. - Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT). 2006. List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels. Second circulating draft, dated 27 September 2006. Surface Water Ambient Monitoring Program (SWAMP). 2007. Standard Operating Procedures for Collecting Benthic Macroinvertebrate Samples and Associated Physical and Chemical Data for Ambient Bioassessments in California. February 2007. Van Buuren, B. H., and P. Ode. 2008. Surface Water Ambient Monitoring Program Quality Assurance Program Memorandum. Memo to SWAMP Roundtable, dated 17 September 2008. **FIGURE 2**. Multi-metric Hydropower-IBI scores in Project-affected vs. reference reaches **FIGURE 3.** Benthic community diversity in Project-affected vs. reference reaches FIGURE 4. Abundance of major insect orders in Project-affected vs. reference reaches **FIGURE 5.** Abundance of major non-insect classes in Project-affected vs. reference reaches **TABLE 1.** GPS locations of 2011 SWAMP bioassessment survey reaches in Project 184 area. | | | UTM LO | CATION ¹ | |---------|--|-----------------------|-------------------------| | SITE ID | DESCRIPTION | Upstream ² | Downstream ² | | AR-B1 | Alder Creek below diversion | 10 S 0727817 4293722 | 10 S 0727783 4293846 | | AR-B2 | Alder Creek above diversion | 10 S 0730155 4291030 | 10 S 0730155 4291140 | | BU-B1 | Bull Creek below diversion | 10 S 0723080 4294280 | 10 S 0722997 4294368 | | BU-B2 | Bull Creek above diversion | 10 S 0723612 4293646 | 10 S 0723542 4293736 | | CA-B1 | Caples Creek below Caples Lake | 10 S 0756345 4288557 | 10 S 0756231 4288551 | | EC-B1 | Echo Creek below Lower Echo Lake | 10 S 0757821 4303759 | 10 S 0757934 4303807 | | ES-B1 | Esmerelda Creek below diversion | 10 S 0718115 4293217 | 10 S 0718078 4293288 | | ES-B2 | Esmerelda Creek above diversion | 10 S 0718332 4292992 | 10 S 0718311 4293066 | | NN-B1 | No Name Creek below diversion | 10 S 0731140 4293874 | 10 S 0731124 4293956 | | NN-B2 | No Name Creek above diversion | 10 S 0731173 4293746 | 10 S 0731153 4293794 | | OG-B1 | Ogilby Creek below diversion | 10 S 0718893 4293859 | 10 S 0718909 4293906 | | OG-B2 | Ogilby Creek above diversion | 10 S 0720413 4293075 | 10 S 0720346 4293141 | | PY-B1 | Pyramid Creek below Lake Aloha | 10 S 0750292 4300308 | 10 S 0750294 4300162 | | SB-B1 | Strawberry Creek near SFAR confluence | 10 S 0747420 4296859 | 10 S 0747312 4296920 | | SH-B1 | Sherman Canyon Creek | 10 S 0743689 4285807 | 10 S 0743619 4285914 | | SO-B1 | South Fork American below Kyburz diversion | 10 S 0732883 4294117 | 10 S 0732748 4294072 | | SV-B2 | Silver Fork American below Silver Lake | 10 S 0750229 4284442 | 10 S 0750132 4284527 | | WC-B1 | Woods Creek above Caples Lake | 10 S 0758190 4287291 | 10 S 0758071 4287309 | ¹ GPS datum: NAD 83; ² Upsream and downstream locations are endpoints of each SWAMP survey reach (corresponding to main survey transects "K" and "A," respectively). **TABLE 2.** Biological metrics used to describe benthic samples. Listed responses are for generalized ecological impairment. | METRIC | DESCRIPTION OF METRIC | RESPONSE TO
IMPAIRMENT | |---------------------------|---|---------------------------| | RICHNESS-TYPE MEASURES | | | | # Total Taxa | Total number of taxa | Decrease | | # Ephemeroptera Taxa | Number of mayfly taxa | Decrease | | # Plecoptera Taxa | Number of stonefly taxa | Decrease | | # Trichoptera Taxa | Number of caddisfly taxa | Decrease | | # Diptera Taxa | Number of taxa in the order Diptera (true flies) | Variable | | # Chironomid Taxa | Number of taxa in the dipteran family Chironomidae | Increase | | # ET Taxa* | Number of taxa in the orders Ephemeroptera (mayflies) and Trichoptera (caddisflies) | Decrease | | # EPT Taxa | Number of taxa in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) | Decrease | | Shannon Diversity* | General measure of sample diversity that incorporates richness and evenness (In-based) | Decrease | | Shannon Evenness | Measure of how evenly taxa abundances are distributed | Decrease | | Density (#/ft²) | Estimated total number of individuals per square foot area | Variable | | COMPOSITION-TYPE MEASU | RES | | | % EPT | Percent composition of EPT taxa | Decrease | | % Sensitive EPT | Percent composition of EPT taxa with tolerance values 0-3 | Decrease | | % Baetidae | Percent of individuals in mayfly family Baetidae | Increase | | % Chironomidae | Percent of individuals in midge family Chironomidae | Increase | | % Hydropsychidae | Percent of individuals in caddisfly family Hydropsychidae | Increase | | % Dominant Taxon | Percent of sample comprised of individuals from the most common taxon | Increase | | % Insect Individuals | Percent of individuals that are insects | Decrease | | % Non-Insect Taxa* | Percent of taxa that are non-insect taxa | Increase | | TOLERANCE / INTOLERANCE | MEASURES | | | % Tolerant Individuals* | Percent of individuals that are highly tolerant of impairment as indicated by tolerance values of 8, 9, or 10 | Increase | | % Intolerant Individuals* | Percent of individuals that are highly intolerant of impairment as indicated by tolerance values of 0, 1, or 2 | Decrease | | Weighted Tolerance Value | Value between 0 and 10, weighted by abundances of organisms designated as tolerant or intolerant | Increase | | FUNCTIONAL FEEDING GROU | P MEASURES | | | % Filterers | Percent of individuals that filter fine particulate matter | Increase | | % Scrapers* | Percent of individuals that graze upon periphyton | Variable | | % Collectors | Percent of individuals that collect/gather fine particulate matter | Increase | | % Shredders | Percent of individuals that shred coarse particulate matter | Decrease | | % Predators* | Percent of individuals that feed on other organisms | Variable | | % Macrophyte Herbivores | Percent of individuals that feed on plants | Variable | | % Piercer Herbivores | Percent of individuals that pierce plants | Variable | | % Omnivores | Percent of individuals that feed on various food items | Variable | | % Parasites | Percent of individuals that parasitize other organisms | Variable | | MULTI-METRIC INDEX | | | | Hydropwer-IBI | Composite index of 7 key metrics* selected to be sensitive to cumulative effects of hydropower operations (scores out of 100) | Decrease | **TABLE 3**. Scoring ranges for constituent metrics of the Hydropower-IBI. Thresholds shown are for 500-organism fixed-count samples identified to SAFIT Level II standard taxonomic effort (after Rehn 2010). | SCORE | #ET Taxa
Richness | %Intolerant
Individuals | %Scrapers | %Non-Insect
Taxa | Shannon
Diversity | %Predators | %Tolerant
Individuals | |-------|----------------------|----------------------------|-----------|---------------------|----------------------|------------|--------------------------| | 0 | 0-4 | 0-5 | 0-2 | ≥20 | ≤2.35 | 0-7 | ≥18 | | 1 | 5-6 | 6-9 | 3-7 | 19 | 2.36-2.47 | 8 | 16-17 | | 2 | 7 | 10-13 | 8-11 | 17-18 | 2.48-2.60 | 9 | 15 | | 3 | 8-9 | 14-17 | 12-15 | 16 | 2.61-2.72 | 10 | 13-14 | | 4 | 10-11 | 18-21 | 16-19 | 15 | 2.73-2.84 | 11 | 12 | | 5 | 12-13 | 22-25 | 20-23 | 14 | 2.85-2.96 | 12 | 10-11 | | 6 | 14-15 | 26-29 | 24-27 | 13 | 2.97-3.08 | 13 | 9 | | 7 | 16-17 | 30-33 | 28-31 | 11-12 | 3.09-3.20 | 14 | 7-8 | | 8 | 18 | 34-37 | 32-35 | 10 | 3.21-3.33 | 15 | 6 | | 9 | 19-20 | 38-41 | 36-39 | 9 | 3.34-3.49 | 16 | 4-5 | | 10 | ≥21 | ≥42 | ≥40 | ≤8 | ≥3.50 | ≥17 | ≤3 | **TABLE 4.** Summary of biological metrics for 2011 Project 184 SWAMP bioassessment samples | | | | | | PF | ROJECT- | AFFECT | ED SIT | ES | | | | | | | | REFE | RENCE | SITES | | | | AVER | RAGES |
----------------------------|---------|-----------| | 2011 SWAMP BIOASSESSMENT | AR-B1 RWB | BU-B1 RWB | CA-B1 RWB | CA-B1 TRC | EC-B1 RWB | EC-B1 TRC | ES-B1 RWB | NN-B1 RWB | OG-B1 RWB | PY-B1 RWB | SO-B1 RWB | SV-B2 RWB | SV-B2 TRC | AR-B2 RWB | BU-B2 RWB | ES-B2 RWB | OG-B2 RWB | NN-B2 RWB | SB-B1 RWB | SH-B1 RWB | WC-B1 RWB | WC-B1 TRC | PROJECT | REFERENCE | | RICHNESS-TYPE MEASURES | # Total Taxa | 40 | 51 | 31 | 36 | 37 | 38 | 50 | 62 | 57 | 36 | 50 | 48 | 38 | 49 | 65 | 48 | 68 | 51 | 58 | 61 | 43 | 49 | 44 | 55 | | # Ephemeroptera Taxa | 7 | 8 | 3 | 5 | 11 | 10 | 6 | 5 | 8 | 9 | 13 | 7 | 8 | 11 | 7 | 8 | 7 | 6 | 13 | 13 | 9 | 8 | 8 | 9 | | # Plecoptera Taxa | 6 | 11 | 3 | 4 | 7 | 6 | 10 | 13 | 12 | 8 | 7 | 7 | 7 | 9 | 11 | 9 | 11 | 11 | 11 | 9 | 10 | 14 | . 8 | 11 | | # Trichoptera Taxa | 9 | 9 | 3 | 6 | 10 | 9 | 7 | 9 | 11 | 7 | 7 | 11 | 6 | 10 | 8 | 6 | 8 | 8 | 12 | 13 | 6 | 8 | 8 | 9 | | # Diptera Taxa | 9 | 14 | 18 | 16 | 6 | 9 | 19 | 17 | 14 | 5 | 12 | 15 | 11 | 11 | 25 | 16 | 25 | 12 | 12 | 16 | 13 | 16 | 13 | 16 | | # Chironomid Taxa | 6 | 10 | 15 | 13 | 5 | 7 | 14 | 8 | 11 | 4 | 6 | 10 | 7 | 7 | 13 | 10 | 16 | 6 | 5 | 9 | 6 | 10 | . 9 . | : 9 : | | # ET Taxa* | 16 | 17 | 6 | 11 | 21 | 19 | 13 | 14 | 19 | 16 | 20 | 18 | 14 | 21 | 15 | 14 | 15 | 14 | 25 | 26 | 15 | 16 | 16 | 18 | | # EPT Taxa | 22 | 28 | 9 | 15 | 28 | 25 | 23 | 27 | 31 | 24 | 27 | 25 | 21 | 30 | 26 | 23 | 26 | 25 | 36 | 35 | 25 | 30 | 23 | 28 | | Shannon Diversity* | 2.00 | 2.94 | 2.54 | 2.62 | 2.69 | 2.80 | 3.18 | 3.41 | 3.37 | 2.86 | 3.10 | 3.21 | 2.98 | 2.71 | 3.59 | 2.97 | 3.67 | 3.15 | 3.16 | 3.39 | 2.87 | 2.90 | 2.90 | 3.16 | | Shannon Evenness | 0.54 | 0.75 | 0.74 | 0.73 | 0.75 | 0.77 | 0.81 | 0.83 | 0.83 | 0.80 | 0.79 | 0.83 | 0.82 | 0.70 | 0.86 | 0.77 | 0.87 | 0.80 | 0.78 | 0.83 | 0.76 | 0.75 | 0.77 | 0.79 | | Density (#/ft²) | 1245 | 296 | 377 | 517 | 577 | 749 | 343 | 219 | 274 | 156 | 387 | 291 | 255 | 603 | 147 | 374 | 180 | 405 | 294 | 187 | 39 | 74 | 437 | 256 | | COMPOSITION-TYPE MEASURE | S | 33.3 | | | | | 35.13 | | 35 3 | | 35/3 | | 35/3 | 9.656 | | 35.3 | | 85 8 | 9.656 | 35 3 | | 20.0 | 650.60 | | | % EPT | 85 | 79 | 56 | 61 | 88 | 89 | 48 | 61 | 74 | 84 | 78 | 69 | 83 | 67 | 62 | 70 | 48 | 70 | 85 | 73 | 85 | 87 | 73 | 72 | | % Sensitive EPT | 77 | 55 | 52 | 56 | 62 | 53 | 43 | 53 | 64 | 56 | 44 | 49 | 56 | 31 | 46 | 58 | 37 | 58 | 69 | 50 | 54 | 49 | . 55 | : 50: | | % Baetidae | <1 | 13 | 2 | 3 | 7 | 6 | 3 | 4 | 10 | 15 | 18 | <1 | 3 | 2 | 5 | 2 | 4 | 10 | 14 | 5 | 4 | 8 | 6 | 6 | | % Chironomidae | 7 | 7 | 16 | 12 | 5 | 4 | 13 | 4 | 14 | 3 | 5 | 8 | 5 | 2 | 13 | 9 | 15 | 7 | 2 | 15 | 6 | 7 | 8 | 8 | | % Hydropsychidae | 5 | 1 | 0 | 0 | 7 | 22 | 1 | 7 | 0 | 5 | 4 | 5 | 10 | 1 | 3 | 0 | <1 | 6 | 3 | <1 | 0 | <1 | . 5 | 2 | | % Dominant Taxon | 56 | 29 | 26 | 26 | 28 | 22 | 18 | 12 | 14 | 16 | 18 | 12 | 16 | 31 | 10 | 26 | 9 | 20 | 14 | 12 | 26 | 29 | - 22 | 20 | | % Insect Individuals | 97 | 92 | 74 | 76 | 93 | 94 | 82 | 84 | 92 | 89 | 91 | 88 | 94 | 97 | 95 | 90 | 79 | 92 | 95 | 94 | 97 | 98 | 88 | 93 | | % Non-Insect Taxa* | 3 | 8 | 26 | 24 | 7 | 6 | 18 | 16 | 8 | 11 | 9 | 12 | 6 | 3 | 5 | 10 | 21 | 8 | 5 | 6 | 3 | 2 | 12 | 7 | | TOLERANCE / INTOLERANCE MI | EASUR | ES | | | | | | | 1000 | 100000 | | | 10000 | 1100 | | 10000 | 100000 | | | 1000 | | 7.71.77 | | 2000 | | % Tolerant Individuals* | 2 | <1 | 3 | 4 | <1 | 1 | 5 | 4 | 2 | 1 | 1 | 5 | 3 | 2 | <1 | <1 | 1 | 2 | 3 | <1 | 1 | 1 | 3 | 1 | | % Intolerant Individuals* | 76 | 26 | 55 | 56 | 60 | 51 | 35 | 51 | 56 | 56 | 41 | 49 | 52 | 31 | 37 | 35 | 33 | 52 | 72 | 49 | 56 | 49 | 51 | 46 | | Weighted Tolerance Value | 2.0 | 3.3 | 3.1 | 3.0 | 2.5 | 2.9 | 3.5 | 3.0 | 2.8 | 2.6 | 3.1 | 2.9 | 2.7 | 3.5 | 3.2 | 3.1 | 3.6 | 2.6 | 1.8 | 3.0 | 2.7 | 2.9 | 2.9 | 2.9 | | FUNCTIONAL FEEDING GROUP | MEASL | IRES | | | | | | | 33.3 | | | | | | | | | | | 33.3 | | 33. 3 | | | | % Filterers | 11 | <1 | 2 | 3 | 7 | 22 | <1 | 3 | 2 | <1 | 5 | 12 | 14 | 20 | 2 | <1 | 4 | 2 | 1 | 2 | <1 | 5 | 6 | 4 | | % Scrapers* | 12 | 39 | 0 | 1 | 14 | 12 | 15 | 12 | 15 | 27 | 29 | 11 | 17 | 49 | 13 | 38 | 14 | 29 | 37 | 32 | 28 | 38 | 16 | 31 | | % Collectors | 9 | 32 | 32 | 31 | 21 | 22 | 44 | 33 | 35 | 40 | 51 | 39 | 32 | 9 | 35 | 30 | 33 | 31 | 29 | 28 | 28 | 20 | 32 | 27 | | % Shredders | 6 | 16 | 21 | 21 | 44 | 31 | 20 | 23 | 22 | 20 | 4 | 15 | 15 | 6 | 19 | 18 | 22 | 16 | 13 | 26 | 20 | 15 | 20 | 17 | | % Predators* | 7 | 11 | 41 | 41 | 10 | 10 | 18 | 25 | 12 | 13 | 10 | 20 | 21 | 14 | 29 | 13 | 24 | 17 | 19 | 12 | 20 | 14 | 18 | 18 | | % Macrophyte Herbivores | 56 | 1 | 0 | 0 | <1 | 0 | 2 | 3 | 14 | 0 | <1 | <1 | 0 | <1 | <1 | <1 | <1 | 4 | <1 | 0 | 0 | 0 | 6 | <1 | | % Piercer Herbivores | 0 | 0 | 2 | <1 | 0 | <1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | <1 | 0 | | % Omnivores | <1 | <1 | 2 | 3 | 3 | 4 | 1 | <1 | 1 | 1 | <1 | 2 | 1 | 1 | 2 | <1 | 1 | <1 | 1 | 0 | 3 | 9 | 2 | 2 | | MULTI-METRIC INDEX | | 2000 | | | | | | | | 100000 | | 100000 | | 1000 | 100000 | | 100000 | | 100000 | 2000 | | | | | | Hyropower-IBI | 42 | 49 | 39 | 41 | 49 | 46 | 50 | 49 | 51 | 50 | 52 | 57 | 56 | 57 | 57 | 53 | 51 | 52 | 63 | 62 | 57 | 59 | 49 | 57 | **TABLE 5.** Summary of reach-wide physical habitat measurements from 2011 Project 184 SWAMP bioassessment sites | 20: | 11 SWAMP BIOASSESSMENT | AR-B1 | AR-B2 | BU-B1 | BU-B2 | CA-B1 | EC-B1 | ES-B1 | ES-B2 | NN-B1 | NN-B2 | OG-B1 | OG-B2 | PY-B1 | SB-B1 | SH-B1 | SO-B1 | SV-B2 | WC-B1 | |---------------|----------------------------------|-----------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | RE. | ACH-WIDE MEASUREMENTS (meas | ured once | per site) | | | | | | | | | | | | | | | | | | | Site Elevation (m) | 1082 | 1511 | 1002 | 1261 | 2367 | 1948 | 1159 | 1182 | 1164 | 1197 | 945 | 1240 | 1921 | 1733 | 1722 | 1199 | 2193 | 2388 | | | Evidence of Recent Rainfall | no | min | no | no | no | no | no | no | min | min | no | min | no | no | min | no | no | no | | | Evidence of Fires (<500m) | no | ERAL | Dominat Land Use* | F | F | F | F | F | F/S | F | F | F | F | F | F | F | F | F | F | F | F | | GENERA | Reach Length (m) | 150 | 150 | 150 | 150 | 150 | 150 | 100 | 100 | 100 | 60 | 50 | 100 | 150 | 150 | 150 | 150 | 150 | 150 | | | Reach Slope (%) | 4.8 | 3.8 | 11.8 | 8.0 | 1.6 | 6.0 | 6.3 | 4.3 | 17.1 | 28.0 | 6.8 | 4.1 | 2.2 | 4.8 | 3.2 | 2.4 | 2.5 | 4.8 | | | Reach Sinuosity | 1.2 | 1.3 | 1.2 | 1.2 | 1.3 | 1.2 | 1.3 | 1.4 | 1.3 | 1.3 | 1.0 | 1.0 | 1.0 | 1.1 | 1.1 | 1.0 | 1.1 | 1.2 | | | Discharge (cfs) | 1.5 | 2.2 | 0.2 | 7.5 | 11.4 | 1.8 | 0.5 | 0.5 | 0.4 | 0.4 | 18.9 | 0.1 | 15.8 | 9.1 | 1.7 | 77.5 | 21.5 | 9.2 | | | Epifaunal Substrate/Cover (0-20) | 18 | 19 | 16 | 18 | 19 | 17 | 19 | 17 | 18 | 14 | 15 | 15 | 19 | 18 | 19 | 18 | 19 | 19 | | RPB | Sediment Deposition (0-20) | 19 | 16 | 11 | 13 | 18 | 17 | 18 | 18 | 16 | 15 | 10 | 13 | 20 | 16 | 18 | 16 | 19 | 17 | | | Channel Alteration (0-20) | 20 | 20 | 19 | 20 | 20 | 17 | 20 | 20 | 19 | 16 | 18 | 15 | 20 | 20 | 20 | 19 | 19 | 20 | | | Sample Date | 10/19 | 10/21 | 11/15 | 9/29 | 10/18 | 10/17 | 10/19 | 10/19 | 10/19 | 10/19 | 10/19 | 10/21 | 10/18 | 10/20 | 10/20 | 10/20 | 10/18 | 10/18 | | Ł | Sample Time | 1500 | 1030 | 0930 | 1400 | 1200 | 1400 | 0930 | 1020 | 1500 | 1400 | 1220 | 1040 | 1700 | 0930 | 1300 | 1030 | 1330 | 1000 | | WATER QUALITY | Water Temperature (°C) | 11.6 | 7.3 | 6.0 | 12.4 | 11.8 | 9.0 | 9.3 | 9.3 | 10.7 | 10.7 | 10.8 | 9.1 | 11.7 | 5.5 | 8.1 | 9.6 | 12.6 | 6.6 | | TER (| рН | 7.3 | 7.1 | 7.4 | 7.7 | 6.9 | 7.2 | 7.4 | 7.4 | 7.5 | 7.5 | 7.2 | 7.3 | 6.7 | 7.0 | 7.3 | 7.2 | 6.7 | 7.3 | | W | DO Concentration (mg/L) | 13.8 | 11.2 | 11.2 | 10.7 | 9.5 | 10.2 | 10.2 | 10.2 | 11.5 | 11.5 | 11.5 | 10.5 | 10.0 | 11.2 | 10.6 | 11.6 | 9.9 | 10.0 | | | Specific Conductance (μS/cm) | 42 | 33 | 86 | 76 | 17 | 51 | 47 | 47 | 115 | 115 | 66 | 89 | 2 | 36 | 40 | 32 | 12 | 47 | ^{*}Dominant land use= forest (F), subutrb/town (S), rangeland (R) **TABLE 6a.** Summary of transect-based physical habitat measurements from 2011 Project 184 SWAMP bioassessment sites | 201 | 11 SWAMP BIOASSESSMENT | AR-B1 | AR-B2 | BU-B1 | BU-B2 | CA-B1 | EC-B1 | ES-B1 | ES-B2 | NN-B1 | NN-B2 | OG-B1 | OG-B2 | PY-B1 | SB-B1 | SH-B1 | SO-B1 | SV-B2 | WC-B1 | |--------|--|------------|-------------|------------|------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | TRA | ANSECT-BASED MEASUREMENTS (measured at | multiple i | cross-secti | onal trans | sects with | n site) | | | | | | | | | | | | | | | | Mean Wetted Width (m) | 11.9 | 7.1 | 1.6 | 1.3 | 7.9 | 6.2 | 1.4 | 1.5 | 2.0 | 1.6 | 2.6 | 1.2 | 7.5 | 6.3 | 8.1 | 31.2 | 10.5 | 4.8 | | INEL | Mean Bankfull Width (m) | 22.5 | 17.5 | 5.9 | 3.7 | 10.7 | 10.4 | 3.6 | 3.7 | 4.7 | 4.2 | 8.5 | 5.0 | 11.3 | 11.1 | 13.9 | 43.6 | 13.0 | 6.8 | | CHANNE | Mean Bankfull Height (m) | 0.75 | 0.66 | 0.44 | 1.09 | 0.48 | 0.60 | 0.51 | 0.56 | 0.44 | 0.52 | 1.04 | 0.50 | 6.92 | 0.66 | 0.55 | 0.77 | 0.45 | 0.62 | | 14.14 | Mean Depth (m) | 0.23 | 0.22 | 0.09 | 0.10 | 0.29 | 0.13 | 0.08 | 0.09 | 0.06 | 0.06 | 0.07 | 0.08 | 0.28 | 0.19 | 0.19 | 0.38 | 0.35 | 0.30 | | 10.40 | Median Particle Size (D ₅₀) (mm) | 450 | 120 | 70 | 22 | 68 | 104 | 57 | 24 | 49 | 300 | 50 | 49 | 215 | 160 | 121 | 383 | 187 | 75 | | 0.446 | Mean Cobble Embeddedness (%) | 12 | 17 | 24 | 35 | 12 | 6 | 23 | 14 | 25 | 2 | 42 | 22 | 7 | 10 | 14 | 11 | 13 | 12 | | | % Bedrock (>4m) | 25 | 13 | 2 | 10 | 16 | 0 | 5 | 0 | 0 | 41 | 8 | 0 | 10 | 16 | 20 | 11 | 12 | 5 |
4144	% Boulder, large (>1m-4m)	10	4	3	0	1	2	0	0	0	0	0	0	4	5	4	7	3	4		1000	% Boulder, small (>25cm-1m)	23	28	16	2	7	26	8	0	14	10	10	4	34	23	16	47	25	23		14.14	% Cobble (>64mm-25cm)	22	17	30	20	29	41	35	26	30	10	30	38	31	27	27	15	38	24		Q.	% Gravel, coarse (>16-64mm)	8	17	15	21	36	17	26	31	17	5	17	30	8	10	13	4	11	25		BED	% Gravel, fine (>2-16mm)	10	18	25	18	5	14	13	19	14	12	14	10	9	14	8	14	6	9		1.4	% Sand + %Fines (0-2mm)	3	3	9	29	7	0	13	24	24	21	22	18	5	6	12	2	5	11			CPOM Presence (%)	77	68	88	94	56	41	72	78	91	81	84	91	44	47	85	49	38	76			Mean Microalgae Thickness (mm)	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			Attached Macroalgae Presence (%)	0	40	0	3	57	9	0	0	0	0	4	1	32	11	7	37	53	19		23.23	Unattached Macroalgae Presence (%)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0			Macrophyte Presence (%)	5	30	25	10	3	0	8	2	27	48	10	12	0	3	62	26	4	0		14.14	Stable Banks (%)	95	100	41	100	100	100	0	32	100	100	0	0	100	91	100	100	100	100		BANK	Vulnerable Banks (%)	5	0	0	0	0	0	68	23	0	0	45	36	0	0	0	0	0	0			Eroded Banks (%)	0	0	59	0	0	0	32	45	0	0	55	64	0	9	0	0	0	0	TABLE 6b. Summary of Transect-Based Physical Habitat Measurements from 2011 Project 184 SWAMP Bioassessment Sites (cont'd)	20	11 SWAMP BIOASSESSMENT	AR-B1	AR-B2	BU-B1	BU-B2	CA-B1	EC-B1	EŞ-B1	EŞ-B2	NN-B1	NN-B2	OG-B1	OG-B2	PY-B1	SB-B1	SH-B1	SO-B1	SV-B2	WC-B1		------------	-------------------------------	-------------------	-------------	-------------	--------------	------------	--------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------		TR	ANSECT-BASED MEASUREMENTS con	t'd (measu	ıred at muı	tiple cross	-sectional t	ransects w	vithin site)														(3.14.4	Cascade/Fall (%)	4	2	7	5	0	3	1	1	7	20	0	1	0	3	1	2	1	6		21.21	Rapid (%)	5	0	0	0	1	3	0	0	3	15	33	0	0	3	5	3	0	4		TYPE	Riffle (%)	24	24	31	47	45	64	48	47	46	30	55	42	35	45	29	37	42	18		HABITATT	Run (%)	15	12	13	11	35	10	16	22	13	1	4	30	27	33	10	50	38	18		HAB	Glide (%)	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0		3.43.6	Pool (%)	53	63	44	32	20	22	32	31	32	35	10	22	38	17	56	9	20	46		****	Dry Channel (%)	0	0	6	2	0	0	0	0	0	0	0	6	0	0	0	0	0	0		4444	Filamentous Algae	A/S	A/S	А	Α	S/M	Α	Α	Α	А	А	А	А	A/S	A/S	A/S	A/S	A/S	A/S		13.44	Aquatic Macrophytes	S	S/M	S	A/S	M/H	A/S	A/S	A/S	A/S	A/S	S	A/S	A/S	A/S	M/H	S/M	A/S	А		٦	Boulders	н/∨н	M/H	M/H	S/M	S/M	M/H	S/M	A/S	М	М	M/H	S/M	M/H	M/H	M/H	M/H	M/H	M/H		COMPLEXITY	Woody Debris >3m	A/S	Α	A/S	S/M	S/M	A/S	S/M	A/S	A/S	S/M	A/S	S	A/S	A/S	A/S	A/S	A/S	A/S				S	A/S	S/M	S/M	S	S	S	S	S	S	S	S	S	S	S	S	S	S/M		HABITAT	Undercut Banks	A/S	Α	A/S	H/VH	S	A/S	S/M	A/S	A/S	A/S	A/S	A/S	S	A/S	Α	A/S	A/S	A/S		Ή	Overhanging Vegetation	S/M	S/M	M/H	M/H	S/M	M/H	S/M	М	М/Н	М	S	М/Н	S/M	S	M/H	S	S	М/Н		****	Live Tree Roots	A/S S	A/S		Artificial Structures	A/S	Α	A/S	Α	А	A/S	А	Α	A/S	A/S	А	А	А	A/S	Α	A/S	Α	А	^{*}Habitat Complexity Codes= Absent (A), Sparse (S), Moderate (M), Heavy (H), Very Heavy (VH) **TABLE 6c.** Summary of Transect-Based Physical Habitat Measurements from 2011 Project 184 SWAMP Bioassessment Sites (cont'd)	20	11 SWAMP BIOASSESSMENT	AR-B1	AR-B2	BU-B1	BU-B2	CA-B1	EC-B1	ES-B1	ES-B2	NN-B1	NN-B2	OG-B1	OG-B2	PY-B1	SB-B1	SH-B1	SO-B1	SV-B2	WC-B1		-----------------	-------------------------------------	------------	-------------	-------------	------------	------------	-----------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------		TR	ANSECT-BASED MEASUREMENTS cont'd (r	neasured (at multiple	e cross-sed	tional tra	nsects wit	hin site)														33.3	Mean Total Canopy Cover (%)	58	26	95	95	42	66	98	98	98	98	87	97	62	58	63	27	46	53			Trees/Saplings (>5m high)	M/H	М	H/VH	M/H	M/H	M/H	H/VH	H/VH	H/VH	H/VH	M/H	H/VH	M/H	М/Н	M/H	H/VH	M/H	S/M		*NAI	Shrubs/Saplings (0.5-5m high)	M/H	М	М/Н	M/H	M/H	S/M	М/Н	H/VH	S/M	S/M	M/H	M/H	S/M	S/M	S/M	М	S/M	M/H		RIPARIAN	Woody Shrubs/Saplings (<0.5m high)	S/M М			Herbs/Grasses (<0.5m high)	S/M	S/M	S/M	S/M	M/H	S/M	S/M	S/M	H/VH	S	A/S	S/M	S/M	S/M	S	S/M	S/M	M/H		3.3	Barren Soil/Duff (<0.5m high)	M/H	М/Н	М/Н	S/M	S/M	M/H	н/∨н	М/Н	S/M	VH	S	н	М/Н	М/Н	М/Н	М/Н	M/H	S/M			Walls/Rip-Rap/Dams (%)	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	0	0		3.3	Buildings (%)	5	0	27	0	0	5	0	0	5	0	0	0	0	59	0	0	0	0		13.13	Pavement/Cleared Lot (%)	9	0	27	0	0	5	0	0	0	0	0	0	0	18	0	0	0	0			Road/Railroad (%)	68	0	14	0	0	32	50	77	0	0	0	0	0	18	0	50	0	0			Pipes/(Inlet/Outlet) (%)	0	0	5	0	0	0	0	0	90	100	0	0	0	14	0	0	0	0		NCE	Landfill/Trash (%)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		HUMAN INFLUENCE	Park/Lawn (%)	0	0	0	0	0	18	0	0	0	0	0	0	0	0	0	0	5	0		IANI	Row Crops (%)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Ę	Pasture/Range (%)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			Logging Operations (%)	0	0	0	9	0	0	0	0	0	0	0	50	0	0	0	0	0	0			Mining Activity (%)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			Vegetation Management (%)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			Bridges/Abutments (%)	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			Orchards/Vineyards (%)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	^{*}Riparian Vegetation Codes= Absent (A), Sparse (S), Moderate (M), Heavy (H), Very Heavy (VH) ## Appendix A 500-Organism Fixed-Count Taxa Lists 2011 Project 184 SWAMP Bioassessment **APPENDIX A.** 2011 Project 184 SWAMP Bioassessment 500-Organism Fixed-Count Taxa Lists	APPENDIA A. 2011 PIO	Jeec	101	1 - 1 - 1	HC HC	Dio	3330	331110	1 - 1 - 1		Uigo	111131	C = C =	·cu	cour	10 10	ixu L	1303	100.00	100.00	60.40	0.00	0.000		--	--	--	-----------	-----------	-----------	--	--	-----------	-----------	------------------	-----------	-----------	-----------	-----------	-----------	-----------	--	-----------	--	-----------	-----------	--		Final SAFIT ID	AR-B1 RWB	AR-B2 RWB	BU-B1 RWB	BU-B2 RWB	CA-B1 RWB	CA-B1 TRC	EC-B1 RWB	EC-B1 TRC	ES-B1 RWB	ES-B2 RWB	NN-B1 RWB	NN-B2 RWB	OG-B1 RWB	OG-B2 RWB	PY-B1 RWB	SB-B1 RWB	SH-B1 RWB	SO-B1 RWB	SV-B2 RWB	SV-B2 TRC	WC-B1 RWB	WC-B1 TRC		Hydra			0.00	00.00	55	39			0.00	0.000	0.00	0.00		2		0.00	0.00			50.00	30.000	0.000		Turbellaria			12	1	7	11		4	5	8	2	4	5	13			1				2			Sphaeriidae					Ĺ						_	Ė		10	1		_							Pisidium						7	1				12	4		5		1			26	13							7	2		<u> </u>	-		10	11	8	_		25		-				13				Juga									10	11	-		2	2										Gyraulus	5	5	20	12	65	63	33	24	51	24	30	16	23	43	48	6	27	30	22	7	4	6		Oligochaeta)	,	20	12	03	03	33	24	31	24	30	10	23	43	40	0	27	30			4	- 0		Acari											1		1									-		Utaxatax											1	1	1									 		Athienemanniidae												3										-		Hydrovolzia			1								7	2										├		Cyclothyas											8	8												Protzia	2										4	3				8	1	1				└		Wandesia																2								Atractides	1	1						1								1		1				Ь—		Hygrobates	ļ	<u> </u>					1										1					Щ		Estelloxus												1	1											Lebertia	4										3	1			1	4		4			5	1		Limnochares														1										Mideopsis				1										1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
	Sperchon		8											2											Sperchonopsis								2							3									Stygothrombium														1	2			2						Testudacarus						2																		Torrenticola	2			7					1	8			3	12		2		5	12	11		1		Ostracoda	Ť		1		2				21	1	3		3								2			Ameletus	1	1	1	2			1		21	1	3		6	7	2	1	11	1	7	2	36	13			2	9	8	4	9	17	33	30			13	39	45	,	74	68	9	89	2	11	8	36		Baetis tricaudatus		9	56	20	9	1/	33	30	15	12	6	13	43	20	74	00	18	03		3	13	5		Diphetor hageni			30	20					15	12	0	15	4	20		12	10	10		3	13	- 3		Attenella delantala		<u> </u>					_	42				_				13		10				-		Caudatella hystrix	-	1		-		-	8	12			-	3			7	8		2	-			-		Drunella doddsi							2	12								26	4	8				-		Drunella grandis	-					1	1	5					1		9	2	6	5			3	└		Drunella pelosa		4											11					17				<u> </u>		Ephemerella	27	6	9	15	21	30	13	15	7	28			19	9	8	4	19	63	62	80	34	11		Ephemerella velmae		1														2	3					<u> </u>		Cinygma			3	5					2	6	1	3		2										Cinygmula	14	153	32			1	52	36	7	29				9	30	6	50	61	12	38	131	145		Ecdyonurus																	12							Epeorus	14	44					8	3		2					78	68	24	20	20	19	2	4		Ironodes	3	5	144	47			6	8	38	128	30	36	25	27		2	1	8	3	21				Rhithrogena	1	1					2	14							20	40	18	9			4	37		Paraleptophlebia		12	20	48	3	7	7	2	4	20	18	8	1	22	35	6	26	4	49	32	4	4		Capniidae		3	19	2		1	1		4	3	9	13	3	2		4	4				35	12		Eucapnopsis brevicauda		3												2		1	5	1			3	3		Kathroperla									1	1				6										Sweltsa	1	10	11	14	130	131	20	10	37	17	12		3	22	6	12	17	15	51	57	36	29		Leuctridae		10	1		14	19		10	1		3		2	1			2	10	2	J.	- 50	12		Moselia infuscata	 	 	14	27		1.7			16	7	2	1	8	25		1	_		-						1	 	14	3	-			-	10	- ' -	6	3	7	23		Ė						\vdash		Malenka Sovedina	1		6	8		 	 		5	1	25	12	3	21		-	 		 	-				Soyedina Visalia antonomia	1	1	0	0)	1	23	12	э	21		1	 		 	-		-		Visoka cataractae	-	-	24	24	7.0	70		02	22	20		20	20	3	20	1	27	_	12	22	F2	25		Zapada cinctipes	1	6	21	34	76	78	51	83	33	39	56	26	36	4	30	11	27	1	13	33	53	35		Zapada columbiana	1	1									2		1				<u> </u>					2		Zapada frigida	1	1		<u> </u>		<u> </u>	<u> </u>				<u> </u>	<u> </u>		9	1		5		<u> </u>			<u> </u>			1				1	ı	16	25	17	20	3	5	14	1	30	3	7	1	13	28	2	9		Zapada oregonensis group		11	9	4												_				20		+		Zapada oregonensis group Sierraperla cora		11	9	4			10					1								20						11									2													Sierraperla cora		11	9	6			10				2	1			32					2				Sierraperla cora Soliperla	1	7					10	9	9	13	2	1	9	1		6	7	3	1			1		Section Sect	10 EC-81	о ES-B1 RWB	ES-B2 RWB	23 23	18 NN-B2 RWB	4 OG-81 RWB	OG-B2 RWB	PY-B1 RWB	1 SB-B1 RWB	SH-B1 RWB	SO-B1 RWB	SV-B2 RWB	SV-B2 TRC	WC-B1 RWB	WC-B1 TRC		--	-------------	-------------	-----------	----------	--------------	------------------------	-----------	------------------------	-----------------	-----------------	--	-----------	-----------	-----------	------------------------		Frisonia picticeps Isoperla 6 9 Kogotus nonus Oroperla barbara 1 Perlinodes aurea 4 Skwala Susulus venustus 3 Pteronarcys princeps 1 6 Taeniopterygidae 1 3 6	10	6		23	18	4			1		4	4					Isoperla	10					4					4	А		_	1 1		Kogotus nonus 1 Oroperla barbara 1 Perlinodes aurea 4 Skwala 3 Susulus venustus 3 Pteronarcys princeps 1 6 Taeniopterygidae 1 3 6	10					4				1	4	Λ		6	7		Oroperla barbara 1 Perlinodes aurea 4 Skwala 3 Susulus venustus 3 Pteronarcys princeps 1 6 Taeniopterygidae 1 3 6	10					1 1						4	5	2			Perlinodes aurea 4 Skwala 3 Susulus venustus 3 Pteronarcys princeps 1 6 Taeniopterygidae 1 3 6	10					$\overline{}$				2				5	2		Skwala 3 Susulus venustus 3 Pteronarcys princeps 1 6 Taeniopterygidae 1 3 6	10								1		3				1		Susulus venustus 3 Pteronarcys princeps 1 6 Taeniopterygidae 1 3 6	10							<u> </u>			4				2		Pteronarcys princeps 1 6 Taeniopterygidae 1 3 6	10							\vdash		\vdash		3	3	19	13		Taeniopterygidae 1 3 6	10			1	1	\vdash		\vdash		<u> </u>							The state of s	10		1	_	1	1				$\vdash \vdash$								-			2		\vdash		2	1	-				13	35		Apatania 1 2						\vdash				1				2	2		Pedomoecus sierra	-		1			1.0		1	2	3					\vdash		Amiocentrus aspilus 3 5 Micrasema 281 4 3 4 2	2		3	1.0	21	16	1	1	1	3	2	-			1				8	- 3	16	21	69	1		1	5		1			$\vdash \vdash \vdash$								\vdash	1					4					- gapana	+	14	14	5	2	15			$\vdash \vdash$	\vdash	 	\vdash			$\vdash\vdash$		Anagapetus 7 Glossosoma 5 8	1	14	14	,		30			1	1	6	1			$\vdash \vdash$		Arctopsyche grandis	1					50		23	14				1		\vdash		Hydropsyche 25 6 36	108							-5	1	2	16	27	51		2		Parapsyche 7 14	100	6		37	29	\Box	1		Ħ	一	2				H		Agraylea	1	Ť		-													Hydroptila 9 2																	Lepidostoma 27 5 2 17 9 140	40	3	1			16	13	7	43	13	20	43	10	4			Mystacides alafimbriata												2					Limnephilidae 3	1					1			4						2		Cryptochia				1													Ecclisomyia														1	1		Psychoglypha														3			Dolophilodes 2				2	1		2				4						Wormaldia 4																	Yphria californica 1																	Polycentropus 4 10		1					3	1		6		8			ш		Rhyacophila 4	2									<u> </u>		6	5		ш		Rhyacophila arnaudi										3							Rhyacophila betteni group 1 4 2 1 1 3	8	1		8	3	2		9	1	2			1	2	3		Rhyacophila brunnea group 3 1 3 3	3			1		4		3		<u> </u>		6	10		4		Rhyacophila grandis group 4						1				<u> </u>					igsquare		Rhyacophila hyalinata group	-		_		3	1			7	\vdash					$\vdash \vdash \vdash$																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
Rhyacophila oreta group	-	-	1		2	- 11	45		\vdash	\vdash					$\vdash \vdash \vdash$		Rhyacophila sibirica group 4 3 1 16 3 2	_	5	3	7	3	11	15		4	1		_	_		$\vdash \vdash \vdash$		Gumaga L	1			13	102		12			1		2	1		$\vdash \vdash \vdash$		Farula Neophylax 5				13	102												Neophylax occidentalis 4 1									5	7	10						Oligophlebodes 2								1	53	41	10	3		3	3		Cordulegaster dorsalis 1										T-				,			Octogomphus specularis 12																	Dysmicohermes 1							1										Orohermes crepusculus 14						1			6	4	1	1					Sialis 3 Sanfilippodytes	-			1		\vdash	3			\vdash				2	$\vdash \vdash \vdash$		Ampumixis dispar 3				1													Cleptelmis addenda 2								2		1		9	3				Heterlimnius 19 35		90	37	58	35	1	26										Lara 4	1		1	5	13	Щ	9			$\vdash $					ш		Narpus 9 22	1-	2	1	1	1	1	1	 	$\vdash \vdash$	-	2	2	<u> </u>		$\vdash \vdash$		Optioservus 8 23 Ordobrevia nubifera 2	1					\vdash			2	2	16	2	1		\vdash		Zaitzevia parvula 4	+							4	4	1	10	7	1		\vdash		Zaitzevia posthonia 1 7			1				2										Hydraena 3					1	1	5										Ametor scabrosus	1		<u> </u>	1		$\vdash \vdash \vdash$		$oxed{oxed}$	igsquare	1		<u> </u>	_		igspace		Eubrianax edwardsi 3 1 2 Anchycteis 1 1 1	-	2		2	7	$\vdash\vdash\vdash$		$\vdash \vdash \vdash$	$\vdash \vdash$	4	3	7	8		\vdash		Elodes 1 1 1				1	/					\Box					Н		Atherix pachypus	1								15	Γ	3									ω.	a				- 33			ω.	m		m	m						8			--	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	------------------------	--		Final SAFIT ID	AR-B1 RWB	AR-B2 RWB	BU-B1 RWB	BU-B2 RWB	CA-B1 RWB	CA-B1 TRC	EC-B1 RWB	EC-B1 TRC	ES-B1 RWB	ES-B2 RWB	NN-B1 RWB	NN-B2 RWB	OG-B1 RWB	OG-B2 RWB	PY-B1 RWB	SB-B1 RWB	SH-B1.RWB	SO-B1 RWB	SV-B2 RWB	SV-B2 TRC	WC-B1 RWB	WC-B1 TRC		Ceratopogonidae		53,50	33.53	2	0.535	3,53,5	3333	33.33	300	\$3.53.	3.53.5	130,3	130.30	59,53	23.53	3,53,5	3,533,5	150.50	50.50	50,53	8,335	3,33,5		Atrichopogon											1													Bezzia/Palpomyia			2	3				1		1	3			8		4	5		2		6	3		Forcipomyia Boreochlus			2								1	3		1										Brillia			7				10	5	20	17	1	J	21	8		2					1	1		Brundiniella eumorpha				7																				Cardiocladius		1																				<u> </u>		Chironomini														1							2	—		Conchapelopia Corynoneura			1						3					2			2							Cricotopus (Nostococladius)				4													60							Cricotopus ssp.					11	3		2									1		4	3				Diamesa					1	6															11	7		Eukiefferiella brehmi group	3		_									_	_									\vdash		Eukiefferiella claripennis group Eukiefferiella devonica group		2	3		1	5		1				2	3									2		Eukiefferiella gracei group					1	3		1										1				3		Eukiefferiella ssp.		1	1		10	8	1				1	1			1		1	<u> </u>	1		М			Heleniella														1		1								Larsia				2													<u> </u>	 			igspace	—		Limnophyes									3				4	2			1	-			igwdapsilon	\vdash		Macropelopia Metriocnemus			1										1	3							$\vdash \vdash \vdash$	\vdash		Micropsectra	2	1	3	7	6	5			5	4	2	13	16	6	7	2	3	4	3	2	8	2		Micropsectra/Tanytarsus			J		Ť	J	3	2				15	10					Ė		_	Ť			Microtendipes pedellus group				2					1										5					Nanocladius						1							1						2	1	ш	L		Natarsia				2					1		_										igsquare	<u> </u>		Odontomesa Orthocladiinae			10	1					10	4	1		1	1								\vdash		Orthocladius			10		4	11			10	4	1		1				1	8						Orthocladius complex		1			15	2							5						4	1	4	3		Orthocladius lignicola					2																			Pagastia					1					2							1				ш	igwdown		Parametria con mus		1	5	19					9	3	5	9	10	15								\vdash		Parametriocnemus Paratanytarsus			3	19	1	5			9	3	3	9	10	15					2					Parochlus																						2		Parorthocladius																1	1							Phaenopsectra									4															Polypedilum					_		5	5						6	3				10	6		\vdash		Potthastia longimana group Psilometriocnemus					6														1		$\vdash\vdash\vdash$			Reomyia			2	12					3	4			3	9										Rheocricotopus		1		3			3	1	3				1	1										Rheopelopia					9	8	4												2	4				Rheotanytarsus	27															2	4	2			ш	—		Robackia Stempellina				3						6	7	2		6				1				 		Sublettea	1			3						U				U										Synorthocladius					8	3									3									Tanypodinae																						1		Tanytarsus		2		3	4	2				1				15							2	10		Thienemanniella	1								1	-				1								\vdash		Thienemannimyia group Tvetenia bavarica group	2		2	1	2	2		3	2	2	2	5	10	1	2			9	5	8	\vdash	3		Dixa										1	1		10	1			2			- 0				Meringodixa chalonensis				1							4			2										Chelifera/Metachela					2	8																		Empididae			_	_					_		_		_	1							ш	—		Neoplasta Oreogeton	1		2	6 2					3		2	1	5 2	1			1	1			$\vdash \vdash \vdash$	1		Wiedemannia	6	4						5				1		1	4			1	3			1		Glutops	Ŭ	Ť	1	2	1	1	1		3	1	2	2			Ť		1	1	۲		М			Maruina lanceolata	2										2							2						Pericoma/Telmatoscopus			1	4							10	10				6					9	3		Prosimulium		00	Ļ	_		Ļ			_		_	<u> </u>				1	<u> </u>	<u> </u>	<u> </u>	_	لــِــا	4:		Simulium ssp. Antocha		93	1	2	6 2	3	 		2		3	4	8		 	1	1	4	24	5 8	1	11		Dicranota		2	1	3		3	1		2	3	1	1		8	1	1	5	1	24	ŏ	3	2		Hesperoconopa		<u> </u>		2						5		<u> </u>		1		Ė	Ť	 			4	2		Hexatoma		1					2			1				5		4			1	1	9			Limnophila				5										4			2			2	\Box	<u> </u>		Rhabdomastix	500	F00	F00	500	F00	F00	F00	500	500	500	F00	F00	500	F00	F00	F00	500	500	F00	500	1	F00		TOTAL	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	## Appendix B Estimated Whole-Sample Taxa Lists 2011 Project 184 SWAMP Bioassessment **APPENDIX B.** 2011 Project 184 SWAMP Bioassessment Estimated Whole-Sample Taxa Lists		1000	184	10.00		20.20	0.00	30.30	20.70	0.000	1000	10.00	100	20.70	1000	. 50 50	20.20	1000	1000	10.00		20.70	3.34		---	--	-----------	-----------	-----------	-----------	-----------	-----------	--	-----------	-----------	-------------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------		Final SAFIT ID	AR-B1 RWB	AR-B2 RWB	BU-B1 RWB	BU-B2 RWB	CA-B1 RWB	CA-B1 TRC	EC-B1 RWB	EC-B1 TRC	ES-B1 RWB	ES-B2 RWB	NN-B1 RWB	NN-B2 RWB	OG-B1 RWB	OG-B2 RWB	PY-B1 RWB	SB-B1 RWB	SH-B1 RWB	SO-B1 RWB	SV-B2 RWB	SV-B2 TRC	WC-B1 RWB	WC-B1 TRC		+000-0-0000-0-0-0000-0-0000-0-0000-0-0-0000		-	-		541	315			6			-	-	3			-		-	-	-			Turbellaria			58	8	62	82		58	42	36	20	34	29	57	3	5	3				1			Sphaeriidae			50					50		50		٥.		3,	8						-			Pisidium					14	89	48	10	18		48	27		24	0	5			271	47							29	5	14	65	40	10	36	126	40	21		90		J			2/1	47				Juga			29	5					30
126 | 40 | | _ | | | | | | | | | - | | Gyraulus | <u> </u> | -00 | 460 | 0.5 | 500 | 500 | 075 | 227 | 200 | 220 | 200 | 400 | 5 | 15 | 400 | | 407 | 240 | | 40 | _ | _ | | Oligochaeta | 77 | 90 | 163 | 35 | 596 | 596 | 375 | 337 | 299 | 228 | 200 | 192 | 139 | 174 | 139 | 48 | 127 | 219 | 144 | 43 | 3 | 8 | | Acari | - | | Utaxatax | | | | | | | | | | | 4 | | 5 | | | | | | | | | <u> </u> | | Athienemanniidae | | | | | | | | | | | 4 | 14 | | | | | | | | | | | | Hydrovolzia | | | 5 | | | | | | | | 20 | 7 | | | | | | | | | | | | Cyclothyas | | | | | | | | | | | 36 | 41 | | | | | | | | | | | | Hydryphantidae | | | | | | | | | | | 4 | | | | | | | | | | | | | Protzia | 77 | 20 | 5 | | | | | | | | 20 | 27 | | | | 34 | 3 | 7 | | | | | | Wandesia | | | | | | | | | | | | | | | | 5 | | | | | | | | Atractides | 19 | 10 | | 3 | | | | 19 | | | | | | | | 5 | | 7 | | | | | | Hygrobates | | | | | | | 10 | | | | | | | | | | 10 | | | | | | | Estelloxus | | | | 3 | | | | | | | | 7 | 10 | | | | | | | | | | | Lebertia | 77 | | | | | | | 1 | | | 12 | 7 | Ť | | 5 | 34 | 7 | 27 | 5 | 3 | 5 | 1 | | Limnochares | | | | | | | | | | | | Ė | | 3 | Ť | <u> </u> | <u> </u> | | Ť | Ť | Ť | Ė | | Mideopsis | | | | 5 | | | | | | | | | | 3 | | | | | | | | | | Sperchon | 58 | 90 | | | | | | | | | | | 5 | , | | | | | | | | | | ' | 36 | - | | | | | | 10 | | | | | | | - | - | | 7 | | | | - | | Sperchonopsis | | 10 | | | | | | 10 | | | | | 5 | _ | 5 | 5 | | 7 | | | | | | Stygothrombium | | | | | | | | | | | 4 | | | 3 | 3 | | | 14 | | | | | | Testudacarus | | | | 3 | 7 | 7 | | 10 | 6 | | 4 | | | | | | | | | | | | | Torrenticola | 77 | | | 33 | | | | | 6 | 42 | | | 14 | 60 | | 14 | | 27 | 59 | 33 | | 1 | | Ostracoda | | | 10 | | 7 | | | | 162 | 12 | 8 | | 10 | 3 | | | | | | | 1 | | | Asellidae | | | | | | | | | | | | | 5 | | | | | | 5 | | | | | Ameletus | 19 | 20 | 5 | 3 | | | 10 | | | 6 | | | 67 | 24 | 5 | 14 | 31 | 14 | 27 | 10 | 35 | 14 | | Baetis tricaudatus | 135 | 160 | 48 | 18 | 96 | 130 | 337 | 356 | | 6 | 44 | 322 | 255 | | 229 | 428 | 24 | 705 | 32 | 43 | 6 | 40 | | Diphetor hageni | | | 303 | 85 | | | | | 114 | 66 | 52 | 130 | 14 | 63 | | | 55 | | 11 | 7 | 12 | 5 | | Attenella delantala | | | | | | | | | | | | | | | | 53 | | 103 | | | | | | Caudatella hystrix | | 20 | | | | 7 | 67 | 115 | | | | 34 | 14 | | 24 | 58 | 3 | 21 | | | | | | Drunella doddsi | 19 | | | | | | 38 | 125 | | | | | | | | 192 | 21 | 21 | | | | | | Drunella grandis | 19 | | | | | 7 | 19 | 48 | | | | | 10 | | 32 | 29 | 17 | 27 | | | 2 | | | Drunella pelosa | | 40 | | | | | | | | | | | 53 | | | | | 151 | | | | | | Ephemerella | 750 | 90 | 58 | 65 | 226 | 205 | 240 | 87 | 30 | 222 | | | 120 | 42 | 56 | 43 | 45 | 397 | 404 | 320 | 26 | 12 | | Ephemerella velmae | 730 | 20 | 30 | 03 | 220 | 203 | 240 | - 67 | 30 | 222 | | | 120 | 42 | 30 | 14 | 7 | 337 | 404 | 320 | 20 | 12 | | • | | 20 | 19 | 12 | | | | | 24 | 42 | 8 | 1.4 | | 9 | | 14 | | | | | | | | Cinygma | 265 | 4000 | | 13 | | 7 | F20 | 422 | 24 | 42 | 8 | 14 | | | 04 | 20 | 267 | | C 4 | 400 | 447 | 475 | | Cinygmula | 365 | 1900 | 163 | | | / | 529 | 433 | 78 | 204 | | | | 39 | 91 | 29 | 267 | 575 | 64 | 100 | 117 | 175 | | Ecdyonurus | | | | | | | | | | | | | | | | | 31 | | | | | - | | Epeorus | 577 | 590 | | | | | 77 | 19 | | 24 | | | | | 288 | 462 | 116 | 192 | 101 | 77 | 2 | 4 | | Ironodes | 38 | 70 | 913 | 163 | | | 48 | 115 | 305 | 964 | 144 | 377 | 135 | 126 | 3 | 5 | 7 | 34 | 21 | 87 | | | | Rhithrogena | 19 | 50 | | | | | 29 | 125 | | | | | | | 48 | 240 | 51 | 116 | | | 9 | 37 | | Paraleptophlebia | 38 | 150 | 96 | 188 | 41 | 62 | 58 | 77 | 18 | 96 | 56 | 48 | 10 | 78 | 123 | 34 | 123 | 27 | 271 | 133 | 4 | 5 | | Siphlonuridae | | | | | | | | | | | | | | | | | 3 | | | | | | | Capniidae | | 20 | 144 | 5 | 7 | 27 | 10 | | 54 | 48 | 56 | 116 | 19 | 9 | | 14 | 24 | 7 | | | 29 | 14 | | Eucapnopsis brevicauda | | 60 | 5 | | | | | | | | | | 5 | 3 | | 5 | 10 | 7 | | | 2 | 3 | | Kathroperla | | | 5 | | | | | | 6 | 6 | | | | 28 | | | | | | | | | | Sweltsa | 38 | 90 | 115 | 30 | 1116 | 1158 | 269 | 154 | 317 | 180 | 52 | 27 | 24 | 87 | 24 | 72 | 75 | 116 | 287 | 217 | 30 | 34 | | Leuctridae | | 1 | 5 | | 75 | 123 | | <u> </u> | 6 | | 12 | 7 | 10 | 3 | 3 | <u> </u> | 14 | <u></u> | 5 | | | 13 | | Moselia infuscata | | | 91 | 105 | | | | | 120 | 72 | 8 | 7 | 58 | 81 | Ť | 5 | <u> </u> | | Ť | | | | | Malenka | | 1 | 5 | 103 | | | | | 120 | 6 | 24 | 21 | 14 | 01 | | , | | | | | | | | | | | 58 | 25 | | | | - | 60 | | _ | | | E 4 | l | | | | | | | \vdash | | Soyedina | ! | | 58 | 25 | | | | 1 | 60 | 30 | 108 | 62 | 10 | 54 | 1 | _ | | | | | | \vdash | | Visoka cataractae | | | | | | | | <u> </u> | | <u> </u> | | | | 12 | <u> </u> | 5 | <u> </u> | <u> </u> | | | | <u> </u> | | Zapada cinctipes | 77 | 130 | 135 | 90 | 521 | 548 | 740 | 1010 | 210 | 377 | 300 | 205 | 236 | 33 | 104 | 82 | 55 | 27 | 48 | 110 | 43 | 45 | | Zapada columbiana | <u> </u> | <u> </u> | | | | | | <u> </u> | | | 12 | 14 | 5 | | | | | | | | | 3 | | Zapada frigida | | <u> </u> | | | | | 10 | 10 | | 6 | | | | 21 | 3 | | 24 | | | | | | | Zapada oregonensis group | | 110 | 77 | 13 | | | 212 | 365 | 126 | 162 | 20 | 48 | 72 | | 93 | 19 | 21 | | 80 | 140 | 3 | 11 | | Sierraperla cora | | | | | | | | | 6 | | | 21 | | | | | | | | | | | | Soliperla | | | | | | | | | | | 8 | 7 | Final SASIT ID | :WB | :WB | RWB | :WB | :WB | TRC | WB | -RC | WB | WB | :WB | :WB | :WB | ₹WB | WB | WB | :WB | :WB | :WB | RC | 3WB | TRC | |--|-----------|-----------|----------|-----------|-----------|-----------|--|-----------|-----------|-----------|-----------|-----------|--|-----------|-----------|-----------|-----------|--|-----------|--|-----------|-------| | Final SAFIT ID | AR-B1 RWB | AR-B2 RWB | BU-B1 R | BU-B2 RWB | CA-B1 RWB | CA-B1 TRC | EC-B1 RWB | EC-B1 TRC | ES-B1 RWB | ES-B2 RWB | NN-B1 RWB | NN-B2 RWB | OG-B1 RWB | OG-B2 RWB | PY-B1 RWB | SB-B1 RWB | SH-B1 RWB | SO-B1 RWB | SV-B2 RWB | SV-B2 TRC | WC-B1 RWB | WC-B1 | | Yoraperla | | 30 | 5 | 10 | | | | | | | 4 | 27 | | 3 | 123 | | | | 5 | 3 | | | | Calineuria californica | 19 | 104 | 25 | 17 | | | 78 | 100 | 108 | 105 | | | 36 | 9 | 13 | 29 | 31 | 22 | 22 | 13 | | 1 | | Doroneuria baumanni | | | | | | | 39 | 53 | | | | | | | 28 | | | | | | | | | Hesperoperla hoguei | | | 20 | 16 | | | | | 27 | | 87 | 121 | 1 | 3 | | 1 | | | | | | | | Hesperoperla pacifica | | | | | | | | | | 1 | | | | | | | | 1 | | | | | | Cultus | 58 | | | | | | | | | | | | | | | | | 7 | | | | | | Frisonia picticeps | 5 | 8 | | Isoperla | 231 | 100 | | | | | | | | 6 | | | 53 | | | | | 48 | 48 | 33 | 1 | 1 | | Kogotus nonus | | | | | | | | | | | | | | | | | 7 | | | | 5 | 2 | | Oroperla barbara | 19 | 10 | | | | | | | | | | | | | | 12 | | 22 | | | | 1 | | Perlinodes aurea | 3 | 12 | | | | | | | | | | | | | | | | 14 | | | | 2 | | Skwala | | | | | | | | | | | | | | | | 6 | | | 16 | 18 | 13 | 16 | | Susulus venustus | | | 5 | | | | | | | | 4 | 7 | | | | | | | | | | | | Pteronarcys princeps | | | 14 | 11 | | | | | 1 | 6 | | 4 | 1 | | | | | 1 | | | | | | Taeniopterygidae | 19 | 50 | | | | | 58 | 96 | | | 20 | | | | 3 | 10 | | | | | 8 | 41 | | Apatania | | 10 | <u> </u> | <u> </u> | 7 | 27 | | | | | | | | | | | 3 | | | | 2 | 2 | | Pedomoecus sierra | | | <u> </u> | <u> </u> | | <u> </u> | | | | | | | | | | 19 | | | | | | | | Amiocentrus aspilus | | 70 | <u> </u> | ļ | ļ | ļ | 87 | 67 | | 6 | | | 77 | | 3 | | 17 | 7 | | | | 1 | | Micrasema | 7423 | 90 | 34 | 10 | | <u> </u> | 10 | | 84 | 30 | 52 | 178 | 433 | 3 | | 10 | | 34 | 5 | | | | | Heteroplectron californicum | | | 5 | 5 | | | 38 | | | | | | 5 | 12 | | | 7 | | 16 | | | | | Agapetus | 19 | | | | | | | | | | | | | | | | 3 | | | | | | | Anagapetus | | | 19 | 3 | | | | | 168 | 126 | 16 | 27 | 67 | | 3 | | | | | | | | | Glossosoma | 77 | 100 | | | | | | | | | | | 168 | | | 10 | 3 | 27 | 5 | | | | | Arctopsyche grandis | | | | | | | | | | | | | | | 67 | 149 | | | | | | | | Hydropsyche | 750 | 120 | | | | | 442 | 1183 | | | | | 5 | | | 10 | 7 | 137 | 186 | 220 | | 2 | | Parapsyche | | | 48 | 45 | | | | | 36 | 6 | 148 | 281 | | 3 | | | | 7 | | | | | | Agraylea | | | | | | | | 10 | | | | | | | | | | | | | | | | Hydroptila | | | | | 48 | 21 | | | | | | | | | | | | | | 3 | | | | Lepidostoma | 750 | 70 | 14 | | 144 | 68 | 1894 | 500 | 24 | 12 | 4 | | 144 | 54 | 29 | 245 | 65 | 199 | 266 | 67 | 2 | | | Mystacides alafimbriata | | | | | | | | | | | | | | | | | | | 11 | | | | | Limnephilidae | | | | | | | 38 | 10 | | | | | 10 | | | 19 | 3 | | | | | 3 | | Cryptochia | | | | | | | | | | | 4 | 7 | | | | | | | | | | | | Ecclisomyia | 2 | 2 | | Psychoglypha | | | . | _ | | | | | | | | _ | | _ | | | | 40 | | | 3 | | | Dolophilodes | | | 14 | 3 | | | | | | | 4 | 7 | | 6 | | | | 48 | | | | | | Wormaldia | | | | 10 | | | | | _ | 18 | | | | | | | 2 | | | | | | | Yphria californica | | | 34 | 3 | | | | | 6 | | | | | 6 | 3 | | 3
21 | | 40 | 2 | | | | Polycentropus | | | 34 | 23
5 | | | | 19 | В | | | | | В | 3 | | 21 | | 48 | 3
7 | | | | Rhyacophila | | | | 5 | | | | 19 | | | | | | | | | 2 | | 21 | / | | | | Rhyacophila angelita group
Rhyacophila arnaudi | | | | | | | | | | | | | | | | 5 | 3 | | | | | | | · · | 19 | 30 | 10 | 3 | | 7 | 19 | 48 | 12 | | 37 | 21 | 10 | | 29 | 10 | 11 | | 5 | 3 | 2 | 4 | | Rhyacophila betteni group
Rhyacophila brunnea group | 59 | 20 | 5 | 3 | 7 | 14 | 19 | 38 | 12 | | 4 | 7 | 29 | | 16 | 5 | 11 | | 21 | 27 | | 4 | |
Rhyacophila grandis group | 33 | 20 | 19 | | | 14 | 13 | 30 | 12 | | - | | 10 | | 10 | , | | | 21 | 21 | | - | | Rhyacophila hyalinata group | 19 | 20 | 13 | | | 7 | | | | | | 21 | 5 | | | 72 | | 28 | | | | | | Rhyacophila oreta group | 13 | 20 | | | | | | | | 6 | | 21 | , | | | 72 | | 20 | | | | | | Rhyacophila sibirica group | 58 | 20 | 14 | 40 | | 7 | 29 | | 36 | 18 | 44 | 62 | 43 | 39 | | 24 | 7 | | | | | 1 | | Gumaga | 36 | 20 | 14 | 40 | | | 23 | 10 | 30 | 10 | 44 | 02 | 43 | 39 | | 24 | 3 | | 5 | 3 | | | | Farula | | | | | | | | 10 | | | 48 | 938 | | 33 | | | , | | , | , | | | | Neophylax | 77 | | | | | | | | | | 70 | 330 | | | | | | | | | | | | Neophylax occidentalis | - ' | 50 | | | | | 10 | | | | | | | | | 19 | 27 | 137 | | | | | | Oligophlebodes | | 10 | | | 1 | | 10 | | | | | | | | 5 | 337 | 147 | 7 | 5 | 3 | 3 | 3 | | Cordulegaster dorsalis | - | 10 | 1 | 7 | 1 | 1 | | | | | 5 | - | | 1 | | 551 | 147 | <u> </u> | , | , | | | | Octogomphus specularis | | | | 26 | | | | | | | , | | | | | | | | | | | | | Dysmicohermes | | 1 | | 1 | 1 | | | | | | | | | 3 | | | | | | | | | | Orohermes crepusculus | 2 | 130 | 1 | | 1 | 1 | | 11 | | | | - | 7 | , | | 15 | 11 | 7 | 14 | 3 | | | | Sialis | | 130 | 1 | 5 | 1 | 1 | | | | | | - | - | 12 | | 13 | | <u> </u> | | , | 2 | | | Agabus | | 1 | 1 | 3 | 1 | 1 | | | | | | | | | | | | | | | <u> </u> | | | • | | | | , | | | | | | | 4 | | | | | | | | | | | | | | i | 1 | | <u> </u> | 1 | ├ | - | - | - | - | _ | - | - | — | - | | | | | | — | | | Sanfilippodytes Ampumixis dispar | 58 | Ampumixis dispar Cleptelmis addenda | 58
19 | 20 | | | | | | | | | | | | | 11 | | 7 | | 53 | 20 | | | | Final SAFIT ID | AR-B1 RWB | AR-B2 RWB | BU-B1 RWB | BU-B2 RWB | CA-B1 RWB | CA-B1 TRC | EC-B1 RWB | EC-B1 TRC | ES-B1 RWB | ES-B2 RWB | NN-B1 RWB | NN-B2 RWB | OG-B1 RWB | OG-B2 RWB | PY-B1 RWB | SB-B1 RWB | SH-B1 RWB | SO-B1 RWB | SV-B2 RWB | SV-B2 TRC | WC-B1 RWB | WC-B1 TRC | |--|-----------|-----------|-----------|-----------|-------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | | Ā | A | B | 8 | 3 | o | Ĭ. | 3 | 3 | ŭ | Z | Z | ŏ | ŏ | Ā | IS | S | S | S | S | 3 | 5 | | Lara | 19 | | 5 | 13 | | | | | 6 | 6 | 40 | 55 | | 36 | | | | | | | | | | Narpus | | | | | | | | | 12 | 6 | 4 | 21 | 5 | 6 | | | | 7 | | | | | | Optioservus | 173 | 350 | | | | | | | | | | | | | | 5 | 14 | 171 | 11 | | | | | Ordobrevia nubifera | 19 | | | | | | | | | | | | | | | 5 | | 7 | | | | | | Zaitzevia parvula | | 70 | | | | | | | | | | | | | 8 | 38 | 7 | 75 | 74 | 10 | | <u> </u> | | Zaitzevia posthonia | | | 5 | 33 | | | | | 6 | 6 | | | | 6 | | | | | | | | | | Stenocolus scutellaris | | | | | | | | | | | | | | | | | | 2 | | | | | | Hydraena | | | 5 | 5 | | | | | 12 | | | 7 | 5 | 15 | | | | | | | | <u> </u> | | Ametor scabrosus | | | | | | | | | | | 4 | | | | | | 3 | | | | | | | Eubrianax edwardsi | 77 | 20 | 10 | | | | | | | | | | | | | | 24 | 21 | 53 | 53 | | | | Anchycteis | | | 6 | 3 | | | | | 7 | 6 | 15 | 48 | | | | | | | | | | | | Elodes | | | | | | | | | | | 8 | | | | | | | | | | | | | Diptera | | | | | | | | | | | 4 | | | | | | | | | | | | | Atherix pachypus | | | | | | | | | | | | | | | | 82 | | 48 | | | | | | Ceratopogonidae | | | | 3 | Atrichopogon | | | | | | | | | | | 4 | | | | | | | | | | | | | Bezzia/Palpomyia | | 20 | | 10 | | | 29 | 38 | | 12 | 8 | | | 45 | | 10 | 21 | | 16 | 3 | 4 | 3 | | Forcipomyia | | | 5 | Probezzia | | | 5 | Stilobezzia | | 10 | Chironomini | | | | | | | | | | | | | | 3 | | | | | | | | | | Microtendipes pedellus group | 38 | | | 5 | | | | | 6 | | | | | | | | | | 48 | | | | | Phaenopsectra | | | | | | | | | 18 | | | | | 3 | | | | | 5 | | | | | Polypedilum | | | | | | | 87 | 67 | | | | | | 15 | 11 | | | | 69 | 30 | | | | Robackia | | | | | | | | | | | | | | 10 | | | | 14 | - 05 | - 50 | | | | Micropsectra | 38 | 10 | 14 | 30 | 48 | 41 | | | 42 | 54 | 4 | 96 | 87 | 30 | 19 | 10 | 14 | 62 | 27 | 7 | 5 | 2 | | Micropsectra/Tanytarsus | 30 | 10 | | 30 | 70 | 72 | 96 | 19 | 72 | 34 | _ | 30 | 0, | 30 | 15 | 10 | 17 | 02 | | | | | | Paratanytarsus | | | | | 21 | 41 | 30 | -17 | | | | | | | | | | | 11 | | | _ | | Rheotanytarsus | 731 | | | | | 71 | | | | | | | | | 3 | 14 | 14 | 14 | | | | | | Stempellina | 731 | | | 10 | | | | | 6 | 48 | 28 | 27 | | 27 | | 14 | 14 | 14 | | | | | | Sublettea | 19 | | | 10 | | | | | | 70 | -20 | | | | 3 | | | | | | | | | Tanytarsus | 15 | 10 | | 10 | 34 | 21 | | | | 6 | | | 5 | 48 | 3 | | | | | | 2 | 13 | | Diamesa | | 10 | | 10 | 21 | 55 | | | | 0 | | | 3 | 46 | | | | 7 | | | 8 | 12 | | | | | | | 7 | 14 | | | | 24 | | 7 | | | | | 3 | | - | | ٥ | 1 | | Pagastia | | | | | 1 | | | | | 24 | | / | | | | | 3 | | 5 | | | 1 | | Potthastia longimana group | | | 62 | _ | 34 | 14 | | | 70 | 24 | 42 | | 24 | 2 | | | | | 5 | | | ├── | | Orthocladiinae | | | 63 | 3 | | | 405 | | 78 | 24 | 12 | | 34 | 3 | _ | | _ | | | | | | | Brillia | | | 24 | | | | 135 | 115 | 156 | 114 | 12 | | 106 | 45 | 3 | 5 | 7 | | | | 1 | 1 | | Cardiocladius | | 10 | | | | | | | | | | | | | | | _ | | | | | ├ | | Corynoneura | | | 5 | | | | | | 24 | | | | | 3 | | | 3 | | | | | ├ | | Cricotopus ssp. | 38 | | | | 68 | 14 | | 10 | | | | | | | | | 3 | | 21 | 10 | | <u> </u> | | Cricotopus (Nostococladius) | 19 | | | 8 | | | | | | | | | | | | 14 | 298 | | | | | | | Eukiefferiella ssp. | | | | | 75 | 55 | | 10 | | | | | | | | | | | | | 1 | | | Eukiefferiella brehmi group | 77 | | | 3 | | | | | | | | | | | | 14 | | | | | | ├ | | Eukiefferiella claripennis group | | | 19 | | | | | | 12 | | | 21 | 24 | | 3 | | | 7 | | | | <u> </u> | | Eukiefferiella devonica group | | 30 | | | 14 | 34 | | 29 | | | | | | | | | | | | 3 | | 2 | | Eukiefferiella gracei group | | | | | | | | | | | | | | | | | | 21 | | | | 3 | | Heleniella | | | | | | | | | | | | | | 3 | | 5 | | | | | | <u> </u> | | Krenosmittia | | | | | | | | | | 6 | | | | | | | | | | | | <u> </u> | | Limnophyes | | | | | | | | | 12 | | | | | | | | 3 | | | | | | | Metriocnemus | | | 5 | Nanocladius | | | 5 | | 7 | 7 | | | | | 4 | | 5 | | | | | | 16 | 7 | | | | Orthocladius | 19 | | | | 27 | 62 | 10 | | | | | | | | | | 3 | 62 | | | | | | Orthocladius complex | | 10 | 5 | | 82 | 27 | | | 6 | | | | 24 | | | 5 | | 7 | 21 | 7 | 4 | 5 | | Orthocladius lignicola | | | | | 7 | | | | | | | | | | | | | | | | | | | Parametriocnemus | | | 48 | 65 | | | | | 54 | 24 | 16 | 103 | 67 | 45 | | 5 | | | | | | | | Parorthocladius | | | | | | | | | | | | | | | | 5 | 7 | | | | | 1 | | Psilometriocnemus | Rheocricotopus | | 10 | | 8 | | | 38 | 10 | 12 | 6 | 4 | 7 | 5 | 9 | 5 | | | | | | 1 | | | Synorthocladius | | _ <u></u> | | Ť | 27 | 14 | | | | Ť | <u> </u> | Ė | T - | | 11 | | | | | | 1 | | | -, | 19 | | 5 | | | <u>-</u> - | | | 6 | | | | 5 | | | | | | | | | \vdash | | Thienemanniella | | | | | | 1 | | | | 1 | i | | | | | 1 | i | i | 1 | 1 | l | | | Thienemanniella
Tvetenia bavarica group | 19 | | 5 | 5 | 21 | 34 | | 29 | 12 | 12 | 8 | 48 | 43 | 3 | 5 | | | 41 | 37 | 17 | | 3 | | Final SAFIT ID | AR-B1 RWB | AR-B2 RWB | BU-B1 RWB | BU-B2 RWB | CA-B1 RWB | CA-B1 TRC | EC-B1 RWB | EC-B1 TRC | ES-B1 RWB | ES-B2 RWB | NN-B1 RWB | NN-B2 RWB | OG-B1 RWB | OG-B2 RWB | PY-B1 RWB | SB-B1 RWB | SH-B1 RWB | SO-B1 RWB | SV-B2 RWB | SV-B2 TRC | WC-B1 RWB | WC-B1 TRC | |-------------------------| | | AR-B | AR-B | BU-B | BU-B | CA-B | ₽- | EC-B | EC-B | ES-B | ES-B. | NN-B | NN-B | 9-90 | 0G-B | PY-B | SB-B | SH-B | SO-B | SV-B | SV-B | WC-B | WC- | | Boreochlus | | | 5 | | | | | | | 6 | 4 | 14 | | 3 | | | | | | | | | | Parochlus | 2 | | Odontomesa | | | | | | | | | | | 4 | | | | | | | | | | | | | Tanypodinae | 1 | | Brundiniella eumorpha | | | | 20 | Conchapelopia | 3 | | | Larsia | | | | 5 | Macropelopia | | | | | | | | | | | | | 10 | 9 | | | | | | | | | | Natarsia | | | | 3 | | | | | 6 | | | | | 3 | | | | | | | | | | Paramerina | | 10 | Rheopelopia | | | | | 48 | 89 | 48 | | | | | | | | | | | | 32 | 7 | | | | Reomyia | | | 19 | 23 | | | | | 12 | 12 | | | 10 | 36 | | | 3 | | | | | | | Thienemannimyia group | | | | | | | | | 18 | 18 | | | | 3 | | | | | | | | | | Dixa | | | | | | | | | | 6 | 4 | 7 | | 3 | | | 10 | | | | | | | Meringodixa chalonensis | | | | 3 | | | | | | | 8 | | 5 | 3 | | | | | | | | | | Chelifera/Metachela | | | | | 41 | 55 | | | | | | | | | | | | | | | | | | Neoplasta | 38 | | 10 | 23 | | | | | 18 | | 12 | 41 | 38 | | 3 | | 3 | 7 | 5 | | | | | Oreogeton | | | 10 | 3 | | | | | 12 | 6 | | 14 | 5 | 6 | | | | | | | | 1 | | Wiedemannia | 154 | 30 | | 3 | | | | 29 | | | | | 14 | | 16 | | | 14 | 11 | 3 | | | | Empididae | | | | | | | | | | | | | | 15 | | | | | | | | | | Glutops | | | | 5 | | | | | 24 | 12 | 12 | 21 | | 3 | | | | | | | | | | Maruina lanceolata | 38 | | | | | | | | | | 4 | | | | | | | 7 | | | | | | Pericoma/Telmatoscopus | | | 14 | 8 | | | | | | | 40 | 75 | | | | 14 | 14 | | | | 7 | 3 | | Prosimulium | | | | | | | | | | | | | | | | 5 | | | | | | | |
Simulium ssp. | | 1180 | 10 | 5 | 41 | 7 | | | 6 | | 8 | 48 | 43 | | | | 14 | 41 | 5 | 37 | 1 | 17 | | Antocha | | | | 3 | 7 | 41 | | | | 6 | | | | | | 14 | 7 | 14 | 133 | 40 | | | | Dicranota | 1 | 42 | | 5 | | | | 10 | 20 | 24 | | 7 | 5 | 42 | | 5 | 17 | | | | 2 | 2 | | Hesperoconopa | | | | 5 | | | | | | 30 | | | | 3 | | | | | | | 4 | 2 | | Hexatoma | | 10 | | 3 | | | 19 | | | 20 | | | | 22 | 3 | 12 | | | 5 | 8 | 6 | | | Limnophila | | | | 10 | | | | | | | | | | 18 | | | 3 | | 1 | 3 | | | | Rhabdomastix | 2 | | | Tipula | | 1 | | | | | | | 6 | | | | | | | | | | | | | | TOTAL 13694 6629 3251 1615 4145 4139 6349 5994 3777 4112 2412 4458 3012 1980 1715 3232 2059 4257 3198 2041 428 593 # Appendix C Site Photographs 2011 Project 184 SWAMP Bioassessment FIGURE AR-B1-1. Looking upstream from the bottom transect (A) at Site AR-B1 **FIGURE AR-B1-2**. Looking downstream from the bottom transect (A) at Site AR-B1 FIGURE AR-B1-3. Looking upstream from the middle transect (F) at Site AR-B1 **FIGURE AR-B1-4**. Looking downstream from the middle transect (F) at Site AR-B1 FIGURE AR-B1-5. Looking upstream from the upper transect (K) at Site AR-B1 **FIGURE AR-B1-6**. Looking downstream from the upper transect (K) at Site AR-B1 FIGURE AR-B2-1. Looking upstream from the bottom transect (A) at Site AR-B2 **FIGURE AR-B2-2**. Looking downstream from the bottom transect (A) at Site AR-B2 FIGURE AR-B2-3. Looking upstream from the middle transect (F) at Site AR-B2 **FIGURE AR-B2-4**. Looking downstream from the middle transect (F) at Site AR-B2 FIGURE AR-B2-5. Looking upstream from the upper transect (K) at Site AR-B2 **FIGURE AR-B2-6**. Looking downstream from the upper transect (K) at Site AR-B2 FIGURE CA-B1-1. Looking upstream from the bottom transect (A) at Site CA-B1 **FIGURE CA-B1-2**. Looking downstream from the bottom transect (A) at Site CA-B1 FIGURE CA-B1-3. Looking upstream from the middle transect (F) at Site CA-B1 **FIGURE CA-B1-4**. Looking downstream from the middle transect (F) at Site CA-B1 FIGURE CA-B1-5. Looking upstream from the upper transect (K) at Site CA-B1 **FIGURE CA-B1-6**. Looking downstream from the upper transect (K) at Site CA-B1 **FIGURE EC-B1-1**. Looking upstream from the bottom transect (A) at Site EC-B1 **FIGURE EC-B1-2**. Looking downstream from the bottom transect (A) at Site EC-B1 FIGURE EC-B1-3. Looking upstream from the middle transect (F) at Site EC-B1 **FIGURE EC-B1-4**. Looking downstream from the middle transect (F) at Site EC-B1 FIGURE EC-B1-5. Looking upstream from the upper transect (K) at Site EC-B1 FIGURE EC-B1-6. Looking downstream from the upper transect (K) at Site EC-B1 FIGURE ES-B1-1. Looking upstream from the bottom transect (A) at Site ES-B1 **FIGURE ES-B1-2**. Looking downstream from the bottom transect (A) at Site ES-B1 FIGURE ES-B1-3. Looking upstream from the middle transect (F) at Site ES-B1 **FIGURE ES-B1-4**. Looking downstream from the middle transect (F) at Site ES-B1 FIGURE ES-B1-5. Looking upstream from the upper transect (K) at Site ES-B1 FIGURE ES-B1-6. Looking downstream from the upper transect (K) at Site ES-B1 **FIGURE ES-B2-1**. Looking upstream from the bottom transect (A) at Site ES-B2 **FIGURE ES-B2-2**. Looking downstream from the bottom transect (A) at Site ES-B2 FIGURE ES-B2-3. Looking upstream from the middle transect (F) at Site ES-B2 **FIGURE ES-B2-4**. Looking downstream from the middle transect (F) at Site ES-B2 FIGURE ES-B2-5. Looking upstream from the upper transect (K) at Site ES-B2 FIGURE ES-B2-6. Looking downstream from the upper transect (K) at Site ES-B2 FIGURE NN-B1-1. Looking upstream from the bottom transect (A) at Site NN-B1 **FIGURE NN-B1-2**. Looking downstream from the bottom transect (A) at Site NN-B1 FIGURE NN-B1-3. Looking upstream from the middle transect (F) at Site NN-B1 **FIGURE NN-B1-4**. Looking downstream from the middle transect (F) at Site NN-B1 FIGURE NN-B1-5. Looking upstream from the upper transect (K) at Site NN-B1 **FIGURE NN-B1-6**. Looking downstream from the upper transect (K) at Site NN-B1 FIGURE NN-B2-1. Looking upstream from the bottom transect (A) at Site NN-B2 **FIGURE NN-B2-2**. Looking downstream from the bottom transect (A) at Site NN-B2 FIGURE NN-B2-3. Looking upstream from the middle transect (F) at Site NN-B2 **FIGURE NN-B2-4**. Looking downstream from the middle transect (F) at Site NN-B2 FIGURE NN-B2-5. Looking upstream from the upper transect (K) at Site NN-B2 **FIGURE NN-B2-6**. Looking downstream from the upper transect (K) at Site NN-B2 FIGURE OG-B1-1. Looking upstream from the bottom transect (A) at Site OG-B1 **FIGURE OG-B1-2**. Looking downstream from the bottom transect (A) at Site OG-B1 FIGURE OG-B1-3. Looking upstream from the middle transect (F) at Site OG-B1 **FIGURE OG-B1-4**. Looking downstream from the middle transect (F) at Site OG-B1 FIGURE OG-B1-5. Looking upstream from the upper transect (K) at Site OG-B1 **FIGURE OG-B1-6**. Looking downstream from the upper transect (K) at Site OG-B1 FIGURE OG-B2-1. Looking upstream from the bottom transect (A) at Site OG-B2 **FIGURE OG-B2-2**. Looking downstream from the bottom transect (A) at Site OG-B2 FIGURE OG-B2-3. Looking upstream from the middle transect (F) at Site OG-B2 **FIGURE OG-B2-4**. Looking downstream from the middle transect (F) at Site OG-B2 FIGURE OG-B2-5. Looking upstream from the upper transect (K) at Site OG-B2 **FIGURE OG-B2-6**. Looking downstream from the upper transect (K) at Site OG-B2 FIGURE PY-B1-1. Looking upstream from the bottom transect (A) at Site PY-B1 **FIGURE PY-B1-2**. Looking downstream from the bottom transect (A) at Site PY-B1 FIGURE PY-B1-3. Looking upstream from the middle transect (F) at Site PY-B1 **FIGURE PY-B1-4**. Looking downstream from the middle transect (F) at Site PY-B1 FIGURE PY-B1-5. Looking upstream from the upper transect (K) at Site PY-B1 **FIGURE PY-B1-6**. Looking downstream from the upper transect (K) at Site PY-B1 FIGURE SB-B1-1. Looking upstream from the bottom transect (A) at Site SB-B1 **FIGURE SB-B1-2**. Looking downstream from the bottom transect (A) at Site SB-B1 FIGURE SB-B1-3. Looking upstream from the middle transect (F) at Site SB-B1 **FIGURE SB-B1-4**. Looking downstream from the middle transect (F) at Site SB-B1 FIGURE SB-B1-5. Looking upstream from the upper transect (K) at Site SB-B1 FIGURE SB-B1-6. Looking downstream from the upper transect (K) at Site SB-B1 FIGURE SH-B1-1. Looking upstream from the bottom transect (A) at Site SH-B1 **FIGURE SH-B1-2**. Looking downstream from the bottom transect (A) at Site SH-B1 FIGURE SH-B1-3. Looking upstream from the middle transect (F) at Site SH-B1 **FIGURE SH-B1-4**. Looking downstream from the middle transect (F) at Site SH-B1 FIGURE SH-B1-5. Looking upstream from the upper transect (K) at Site SH-B1 **FIGURE SH-B1-6**. Looking downstream from the upper transect (K) at Site SH-B1 FIGURE SO-B1-1. Looking upstream from the bottom transect (A) at Site SO-B1 **FIGURE SO-B1-2**. Looking downstream from the bottom transect (A) at Site SO-B1 FIGURE SO-B1-3. Looking upstream from the middle transect (F) at Site SO-B1 **FIGURE SO-B1-4**. Looking downstream from the middle transect (F) at Site SO-B1 FIGURE SO-B1-5. Looking upstream from the upper transect (K) at Site SO-B1 **FIGURE SO-B1-6**. Looking downstream from the upper transect (K) at Site SO-B1 FIGURE SV-B2-1. Looking upstream from the bottom transect (A) at Site SV-B2 **FIGURE SV-B2-2**. Looking downstream from the bottom transect (A) at Site SV-B2 FIGURE SV-B2-3. Looking upstream from the middle transect (F) at Site SV-B2 **FIGURE SV-B2-4**. Looking downstream from the middle transect (F) at Site SV-B2 FIGURE SV-B2-5. Looking upstream from the upper transect (K) at Site SV-B2 **FIGURE SV-B2-6**. Looking downstream from the upper transect (K) at Site SV-B2 FIGURE WC-B1-1. Looking upstream from the bottom transect (A) at Site WC-B1 **FIGURE WC-B1-2**. Looking downstream from the bottom transect (A) at Site WC-B1 FIGURE WC-B1-3. Looking upstream from the middle transect (F) at Site WC-B1 **FIGURE WC-B1-4**. Looking downstream from the middle transect (F) at Site WC-B1 FIGURE WC-B1-5. Looking upstream from the upper transect (K) at Site WC-B1 **FIGURE WC-B1-6**. Looking downstream from the upper transect (K) at Site WC-B1 ## Appendix D Copies of Field Datasheets 2011 Project 184 SWAMP Bioassessment